相关习题
 0  257361  257369  257375  257379  257385  257387  257391  257397  257399  257405  257411  257415  257417  257421  257427  257429  257435  257439  257441  257445  257447  257451  257453  257455  257456  257457  257459  257460  257461  257463  257465  257469  257471  257475  257477  257481  257487  257489  257495  257499  257501  257505  257511  257517  257519  257525  257529  257531  257537  257541  257547  257555  266669 

科目: 来源: 题型:

【题目】定义在上的奇函数,当时, ,则关于的函数的所有零点之和为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为F2(1,0),点P(1, )在椭圆C上.
(1)求椭圆C的方程;
(2)过坐标原点O的两条直线EF,MN分别与椭圆C交于E,F,M,N四点,且直线OE,OM的斜率之积为﹣ ,求证:四边形EMFN的面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】
(1)确定函数f(x)的解析式;
(2)当x∈(﹣1,1)时判断函数f(x)的单调性,并证明;
(3)解不等式f(2x﹣1)+f(x)<0.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,点M,N分别在PB,PC上,且MN∥BC.

(1)证明:平面AMN⊥平面PBA;
(2)若M为PB的中点,求二面角M﹣AC﹣D的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知﹣3≤log x≤﹣ ,求函数f(x)=log2 log2 的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数f(x)=lnx﹣ 的零点所在的大致区间是(
A.(1,2)
B.(2,3)
C.(e,3)
D.(e,+∞)

查看答案和解析>>

科目: 来源: 题型:

【题目】如表中给出了2011年~2015年某市快递业务总量的统计数据(单位:百万件)

年份

2011

2012

2013

2014

2015

年份代码

1

2

3

4

5

快递业务总量

34

55

71

85

105


(1)在图中画出所给数据的折线图;

(2)建立一个该市快递量y关于年份代码x的线性回归模型;
(3)利用(2)所得的模型,预测该市2016年的快递业务总量.
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
斜率: ,纵截距:

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100110)[110120)[120130)[130140)[140150]分别加以统计,得到如图所示的频率分布直方图.

1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;

2)若规定分数不小于130分的学生为数学尖子生,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为数学尖子生与性别有关

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四个命题:
①函数y=|x|与函数y= 表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是 . (填上所有正确命题的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距离

(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案