科目: 来源: 题型:
【题目】已知函数f(x)=x2+mx+n有两个零点﹣1与3.
(1)求出函数f(x)的解析式,并指出函数f(x)的单调递增区间;
(2)若g(x)=f(|x|)在x1 , x2∈[t,t+1]是增函数,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准
(吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照
,
,…,
分成9组,制成了如图所示的频率分布直方图.
![]()
(Ⅰ)求直方图中
的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使
的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知F1、F2分别是双曲线
﹣
=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( )
A.![]()
B.![]()
C.![]()
D.2
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},则A∩B=( )
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[
,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.
![]()
(Ⅰ)求
的值;
(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取
人,用
表示身高在
以上的男生人数,求随机变量
的分布列和数学期望
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在
△
中,
,
,
分别为边
的中点,点
分别为线段
的中点.将△
沿
折起到△
的位置,使
.点
为线段
上的一点,如图2.
![]()
(Ⅰ)求证:
;
(Ⅱ)线段
上是否存在点
使得
平面
?若存在,求出
的长,若不存在,请说明理由;
(Ⅲ)当
时,求直线
与平面
所成角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的上下顶点分别为
,且点
.
分别为椭圆
的左、右焦点,且
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)点
是椭圆上异于
,
的任意一点,过点
作
轴于
,
为线段![]()
的中点.直线
与直线
交于点
,
为线段
的中点,
为坐标原点.求
的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】各项均为非负整数的数列
同时满足下列条件:
①
;②
;③
是
的因数(
).
(Ⅰ)当
时,写出数列
的前五项;
(Ⅱ)若数列
的前三项互不相等,且
时,
为常数,求
的值;
(Ⅲ)求证:对任意正整数
,存在正整数
,使得
时,
为常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com