【题目】二次函数y=ax2+bx和反比例函数 在同一坐标系中的图象大致是( )
A.
B.
C.
D.
【答案】B
【解析】解:当a>0时,b>0时,二次函数二次函数y=ax2+bx图象开口向上,且对称轴x=﹣ <0,反比例函数 在第一,三象限且为减函数,故A不正确,
当a>0时,b<0时,二次函数二次函数y=ax2+bx图象开口向上,且对称轴x=﹣ >0,反比例函数 在第二,四象限且为增函数,故D不正确,
当a<0时,b>0时,二次函数二次函数y=ax2+bx图象开口向下,且对称轴x=﹣ >0,反比例函数 在第一,三象限且为减函数,故B正确,
当a<0时,b<0时,二次函数二次函数y=ax2+bx图象开口向上,且对称轴x=﹣ <0,反比例函数 在第二,四象限且为增函数,故C不正确,
故选:B
科目:高中数学 来源: 题型:
【题目】某学校高一 、高二 、高三三个年级共有 名教师,为调查他们的备课时间情况,通过分层
抽样获得了名教师一周的备课时间 ,数据如下表(单位 :小时):
高一年级 | ||||||||
高二年级 | ||||||||
高三年级 |
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为 ,试判断与的大小. (结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的上下顶点分别为,且点. 分别为椭圆的左、右焦点,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点是椭圆上异于, 的任意一点,过点作轴于, 为线段
的中点.直线与直线交于点, 为线段的中点, 为坐标原点.求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名射手在一次射击中的得分是两个随机变量,分别记为X和Y,它们的分布列分别为
X | 0 | 1 | 2 |
P | 0.1 | a | 0.4 |
Y | 0 | 1 | 2 |
P | 0.2 | 0.2 | b |
(1)求a,b的值;
(2)计算X和Y的期望与方差,并以此分析甲、乙两射手的技术情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,若存在常数,使得对任意,均有,则称为有界集合,同时称为集合的上界.
(1)设、,试判断、是否为有界集合,并说明理由;
(2)已知,记().若,
,且为有界集合,求的值及的取值范围;
(3)设均为正数,将中的最小数记为.是否存在正数,使得为有界集合, 均为正数的上界,若存在,试求的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x),若在定义域内存在x0 , 使得f(﹣x0)=﹣f(x0)成立,则称x0为函数y=f(x)的局部对称点.
(1)若a、b∈R且a≠0,证明:函数f(x)=ax2+bx﹣a必有局部对称点;
(2)若函数f(x)=2x+c在定义域[﹣1,2]内有局部对称点,求实数c的取值范围;
(3)若函数f(x)=4x﹣m2x+1+m2﹣3在R上有局部对称点,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com