【题目】某学校高一 、高二 、高三三个年级共有
名教师,为调查他们的备课时间情况,通过分层
抽样获得了
名教师一周的备课时间 ,数据如下表(单位 :小时):
高一年级 |
|
|
|
|
| |||
高二年级 |
|
|
|
|
|
|
| |
高三年级 |
|
|
|
|
|
|
|
|
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是
(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为
,表格中的数据平均数记为
,试判断
与
的大小. (结论不要求证明)
【答案】(1)
;(2)
;(3)
.
【解析】试题分析:(1)直接根据分层抽样方法,可得高三年级的教师共有
(人);(2)根据互斥事件、独立事件的概率公式求解;(3)分别求出三组总平均值
,以及新加入的三个数
的平均数为9,比较大小即可.
试题解析:(1)抽出的20位教师中,来自高三年级的有8名,
根据分层抽样方法,高三年级的教师共有
(人)
(2)设事件为
“甲是现有样本中高一年级中的第
个教师”,
,
事件
“乙是现有样本中高二年级中的第
个教师”,
,
由题意知:
,
,
![]()
设事件
为“该周甲的备课时间比乙的备课时间长”,由题意知,
![]()
所以
![]()
故
;
(3)
,
,
![]()
三组总平均值
,
新加入的三个数
的平均数为9,比
小,
故拉低了平均值,∴
.
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥S﹣ABCD,底面ABCD为菱形,SA⊥平面ABCD,∠ADC=60°,E,F分别是SC,BC的中点. ![]()
(1)证明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是(只填正确说法序号)
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},则A∩B={(0,﹣1),(1,0)};
②
是函数解析式;
③
是非奇非偶函数;
④设二次函数f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f(x1+x2)=c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的左焦点
与抛物线
的焦点重合,直线
与以原点
为圆心,以椭圆的离心率
为半径的圆相切.
(Ⅰ)求该椭圆
的方程;
(Ⅱ)过点
的直线交椭圆于
,
两点,线段
的中点为
,
的垂直平分线与
轴和
轴分别交于
,
两点.记
的面积为
,
的面积为
.问:是否存在直线
,使得
,若存在,求直线
的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)既是奇函数,又是周期为3的周期函数,当x∈(0,
)时,f(x)=sinπx,f(
)=0,则函数f(x)在区间[0,6]上的零点个数是( )
A.9
B.7
C.5
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:f(x)=
在区间(1,+∞)上是减函数;命题q;x1x2是方程x2﹣ax﹣2=0的两个实根,不等式m2+5m﹣3≥|x1﹣x2|对任意实数α∈[﹣1,1]恒成立;若¬p∧q为真,试求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有
(n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
![]()
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn.
(1)求p2的值;
(2)证明:pn>
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com