相关习题
 0  257400  257408  257414  257418  257424  257426  257430  257436  257438  257444  257450  257454  257456  257460  257466  257468  257474  257478  257480  257484  257486  257490  257492  257494  257495  257496  257498  257499  257500  257502  257504  257508  257510  257514  257516  257520  257526  257528  257534  257538  257540  257544  257550  257556  257558  257564  257568  257570  257576  257580  257586  257594  266669 

科目: 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】袋子中放有大小和形状相同的四个小球,它们的标号分别为1、2、3、4,现从袋中不放回地随机抽取两个小球,记第一次取出的小球的标号为a,第二次取出的小球的标号为b,记事件A为“a+b≥6“.
(1)列举出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在区间[0,2]内任取两个实数x,y,求事件“x2+y2≥12P(A)“的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在棱台中, 分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形, 中点, ).

(1)设中点为 ,求证: 平面

(2)若到平面的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆,过点作直线交圆两点,分别过两点作圆的切线,当两条切线相交于点时,则点的轨迹方程为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知X是离散型随机变量,P(X=1)= ,P(X=a)= ,E(X)= ,则D(2X﹣1)等于( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.
(1)求M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ,求 的值;
(2)已知函数f(x)=2( + ﹣2m2﹣1,若函数f(x)在[0, ]上有零点,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C1 (α为参数)与曲线C2:ρ=4sinθ
(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1和C2公共弦的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

同步练习册答案