精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1 (α为参数)与曲线C2:ρ=4sinθ
(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1和C2公共弦的长度.

【答案】
(1)解:曲线C1的普通方程围为(x﹣1)2+y2=4,

曲线C2的直角坐标方程x2+y2﹣4y=0


(2)解:曲线C1和C2公共弦所在额直线为2x﹣4y+3=0,

且点C1(1,0)到直线2x﹣4y+3=0的距离为 =

所以公共弦的长度为2 =


【解析】(1)利用sin2θ+cos2θ=1消参数得到C1的普通方程,对ρ=4sinθ两边同乘以ρ即可得到曲线C2的普通方程;(2)曲线C1和C2公共弦所在额直线为2x﹣4y+3=0,求出圆心距,即可求出公共弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆轴交于两点,点为圆上异于的任意一点,圆在点处的切线与圆在点处的切线分别交于,直线交于点,设点的轨迹为曲线.

(1)求曲线的方程;

(2)曲线轴正半轴交点为,则曲线是否存在直角顶点为的内接等腰直角三角形,若存在,求出所有满足条件的的两条直角边所在直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ax+b(a≠0,b≠0).
(1)若函数f(x)的图象在点(0,f(0))处的切线方程为y=2,求f(x)在区间[﹣2,1]上的最值;
(2)若a=﹣b,试讨论函数f(x)在区间(1,+∞)上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x﹣ ,g(x)= sin2x.
(1)求函数f(x)与g(x)图象交点的横坐标;
(2)若函数φ(x)= ﹣f(x)﹣g(x),将函数φ(x)图象上的点纵坐标不变,横坐标扩大为原来的4倍,再将所得函数图象向右平移 个单位,得到函数h(x),求h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190.195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组人数为4.

(1)求第七组的频数.
(2)估计该校的800名男生身高的中位数在上述八组中的哪一组以及身高在180cm以上(含180cm)的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱台中, 分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形, 中点, ).

(1)设中点为 ,求证: 平面

(2)若到平面的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠ACB为钝角,AC=BC=1, 且x+y=1,函数 的最小值为 ,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,一条宽为1km的两平行河岸有村庄A和供电站C,村庄BAC的直线距离都是2kmBC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄AB供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km

(1)已知村庄AB原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km.现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值;

(2)如图②,点E在线段AD上,且铺设电缆的线路为CEEAEB.若∠DCEθ(0≤θ),试用θ表示出总施工费用y (万元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥,侧棱,底面三角形为正三角形,边长为,顶点在平面上的射影为,有,且.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)线段上是否存在点使得⊥平面,如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案