相关习题
 0  257417  257425  257431  257435  257441  257443  257447  257453  257455  257461  257467  257471  257473  257477  257483  257485  257491  257495  257497  257501  257503  257507  257509  257511  257512  257513  257515  257516  257517  257519  257521  257525  257527  257531  257533  257537  257543  257545  257551  257555  257557  257561  257567  257573  257575  257581  257585  257587  257593  257597  257603  257611  266669 

科目: 来源: 题型:

【题目】已知函数f(x)= (a∈R).
(1)若不等式f(x)<1的解集为(﹣1,4),求a的值;
(2)设a≤0,解关于x的不等式f(x)>0.

查看答案和解析>>

科目: 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.数据表明,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组比第七组少1人.

(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;
(2)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x,y,求满足“|x﹣y|≤5”的事件的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】“数列{an}成等比数列”是“数列{lgan+1}成等差数列”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点分别为,左、右顶点分别为,上、下顶点分别为,四边形与四边形的面积之和为4.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,其中为坐标原点,求直线被以线段为直径的圆截得的弦长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为大力提倡“厉行节俭,反对浪费”,某高中通过随机询问100名性别不同的学生是否做到“光盘”行动,得到如表所示联表及附表:

做不到“光盘”行动

做到“光盘”行动

45

10

30

15

P(K2≥k0

0.10

0.05

0.025

k0

2.706

3.841

5.024

经计算:K2= ≈3.03,参考附表,得到的正确结论是(
A.有95%的把握认为“该学生能否做到光盘行到与性别有关”
B.有95%的把握认为“该学生能否做到光盘行到与性别无关”
C.有90%的把握认为“该学生能否做到光盘行到与性别有关”
D.有90%的把握认为“该学生能否做到光盘行到与性别无关”

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=x2+aln(x+1).
(1)求函数f(x)的单调区间;
(2)若函数F(x)=f(x)+ln 有两个极值点x1 , x2且x1<x2 , 求证F(x2)>

查看答案和解析>>

科目: 来源: 题型:

【题目】某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前被点击的次数也可能会提高已知某关键词被甲乙等多个公司竞争其中甲乙付费情况与每小时点击量结果绘制成如下的折线图.

(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;

(2)若把乙公司设置的每次点击价格为x,每小时点击次数为,则点近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(回归方程系数公式,).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆Γ: + =1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点:

(1)求椭圆Г的方程:
(2)设点A在椭圆Г上,点B在直线y=2上,且OA⊥OB,求证: + 为定值:
(3)设点C在Γ上运动,OC⊥OD,且点O到直线CD距离为常数d(0<d<2),求动点D的轨迹方程:

查看答案和解析>>

科目: 来源: 题型:

【题目】在数列{an}中,若a1=1,anan+1=( n2 , 则满足不等式 + + +…+ + <2016的正整数n的最大值为

查看答案和解析>>

同步练习册答案