科目: 来源: 题型:
【题目】【2017福建三明5月质检】已知直线与抛物线相切,且与轴的交点为,点.若动点与两定点所构成三角形的周长为6.
(Ⅰ) 求动点的轨迹的方程;
(Ⅱ) 设斜率为的直线交曲线于两点,当,且位于直线的两侧时,证明: .
查看答案和解析>>
科目: 来源: 题型:
【题目】【2017广东佛山二模】已知椭圆: ()的焦距为4,左、右焦点分别为、,且与抛物线: 的交点所在的直线经过.
(Ⅰ)求椭圆的方程;
(Ⅱ)过的直线与交于, 两点,与抛物线无公共点,求的面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足2Sn=3an﹣3,数列{bn}的前n项和Tn满足 = +1且b1=1.
(1)求数列{an},{bn}的通项公式;
(2)设cn= ,求数列{cn}的前n项和Pn;
(3)数列{Sn}中是否存在不同的三项Sp , Sq , Sr , 使这三项恰好构成等差数列?若存在,求出p,q,r的关系;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,, 分别为的中点,点在线段上.
(Ⅰ)求证:平面;
(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.
(1)求圆的直角坐标方程;
(2)设圆与直线交于点,若点的坐标为,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l:y=x+1,圆O: ,直线l被圆截得的弦长与椭圆C: 的短轴长相等,椭圆的离心率e= .
(1)求椭圆C的方程;
(2)过点M(0, )的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com