相关习题
 0  257419  257427  257433  257437  257443  257445  257449  257455  257457  257463  257469  257473  257475  257479  257485  257487  257493  257497  257499  257503  257505  257509  257511  257513  257514  257515  257517  257518  257519  257521  257523  257527  257529  257533  257535  257539  257545  257547  257553  257557  257559  257563  257569  257575  257577  257583  257587  257589  257595  257599  257605  257613  266669 

科目: 来源: 题型:

【题目】【2017福建三明5月质检】已知直线与抛物线相切,且与轴的交点为,点.若动点与两定点所构成三角形的周长为6.

() 求动点的轨迹的方程;

() 设斜率为的直线交曲线两点,当,且位于直线的两侧时,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】【2017广东佛山二模】已知椭圆 )的焦距为4,左、右焦点分别为,且与抛物线 的交点所在的直线经过.

(Ⅰ)求椭圆的方程;

(Ⅱ)过的直线交于 两点,与抛物线无公共点,求的面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】【2017四川宜宾二诊】已知函数.

(I)若,求函数的单调区间;(其中是自然对数的底数)

(II)设函数,当时,曲线有两个交点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足2Sn=3an﹣3,数列{bn}的前n项和Tn满足 = +1且b1=1.
(1)求数列{an},{bn}的通项公式;
(2)设cn= ,求数列{cn}的前n项和Pn
(3)数列{Sn}中是否存在不同的三项Sp , Sq , Sr , 使这三项恰好构成等差数列?若存在,求出p,q,r的关系;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】【2017河北唐山三模】已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】【2017重庆二诊】已知函数,设关于的方程个不同的实数解,则的所有可能的值为( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目: 来源: 题型:

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l:y=x+1,圆O: ,直线l被圆截得的弦长与椭圆C: 的短轴长相等,椭圆的离心率e=
(1)求椭圆C的方程;
(2)过点M(0, )的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案