相关习题
 0  257522  257530  257536  257540  257546  257548  257552  257558  257560  257566  257572  257576  257578  257582  257588  257590  257596  257600  257602  257606  257608  257612  257614  257616  257617  257618  257620  257621  257622  257624  257626  257630  257632  257636  257638  257642  257648  257650  257656  257660  257662  257666  257672  257678  257680  257686  257690  257692  257698  257702  257708  257716  266669 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C: 的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为 ,点M的横坐标为

(1)求椭圆C的标准方程;
(2)若∠FPA为直角,求P点坐标;
(3)设直线PA的斜率为k1 , 直线MA的斜率为k2 , 求k1k2的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知中心在坐标原点O,焦点在轴上,离心率为的椭圆C过点

(Ⅰ)求椭圆C的方程;

(Ⅱ)设不过坐标原点O的直线与椭圆C交于P,Q两点,若,证明:点O到直线的距离为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5}则U(A∪B)(
A.{6,8}
B.{5,7}
C.{4,6,7}
D.{1,3,5,6,8}

查看答案和解析>>

科目: 来源: 题型:

【题目】已知左焦点为F(﹣1,0)的椭圆过点E(1, ).过点P(1,1)分别作斜率为k1 , k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=lnx.
(1)求函数g(x)=f(x+1)﹣x的最大值;
(2)若对任意x>0,不等式f(x)≤ax≤x2+1恒成立,求实数a的取值范围;
(3)若x1>x2>0,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)= ,(a>0,且a≠1).
(1)求f(x)的定义域.
(2)证明f(x)为奇函数.
(3)求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率 ,分别是椭圆的左、右顶点,点P是椭圆上的一点,直线PA、PB的倾斜角分别为α、β满足tanα+tanβ=1,则直线PA的斜率为

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)画出这个函数的图象;
(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(3)求函数的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】函数f(x)是定义在(0,+∞)上的函数,且对任意的正实数x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,则不等式f(x)﹣f(8x﹣16)>0的解集是(
A.(0,+∞)
B.(0,2)
C.(2,+∞)
D.(2,

查看答案和解析>>

同步练习册答案