科目: 来源: 题型:
【题目】已知{an}是首项为a1 , 公比为q的等比数列,Sn是{an}的前n项和.Sn= ;若am+an=as+at , 则m+n=s+t;Sk , S2k﹣Sk , S3k﹣S2k成等比数列(k∈N).
以上说法正确的有( )个.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,动点P在底面ABCD内,且P到棱AD的距离与到面对角线BC1的距离相等,则点P的轨迹是( )
A.线段
B.椭圆的一部分
C.双曲线的一部分
D.抛物线的一部分
查看答案和解析>>
科目: 来源: 题型:
【题目】【南通市、泰州市2017届高三第一次调研测试】(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。
(1)当时,试判断四边形MNPE的形状,并求其面积;
(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)=x2+bx+c(其中b,c为实常数).
(1)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为﹣1,求函数y=f(x)的解析式;
(2)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.
(3)记集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠,求证:B≠;
②若A=,判断B是否也为空集.
查看答案和解析>>
科目: 来源: 题型:
【题目】【2017南通扬州泰州苏北四市高三二模】(本小题满分14分)
如图,在平面直角坐标系中,已知椭圆的离心率为,C为椭
圆上位于第一象限内的一点.
(1)若点的坐标为,求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且,求直线AB的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】【苏北四市2016-2017学年度高三年级第一学期期末调研】如图,在平面直角坐标系中,已知椭圆的离心率为,且右焦点到左准线的距离为.
(1)求椭圆的标准方程;
(2)设为椭圆的左顶点,为椭圆上位于轴上方的点,直线交轴于点
,过点作的垂线,交轴于点.
(ⅰ)当直线的斜率为时,求的外接圆的方程;
(ⅱ)设直线交椭圆于另一点,求的面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设圆弧x2+y2=1(x≥0,y≥0)与两坐标轴正半轴围成的扇形区域为M,过圆弧上中点A做该圆的切线与两坐标轴正半轴围成的三角形区域为N.现随机在区域N内投一点B,若设点B落在区域M内的概率为P,则P的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】【南通市、泰州市2017届高三第一次调研测试】(本题满分14分)如图,在平面直角坐标系中,已知椭圆的离心率为,焦点到相应准线的距离为1.
(1)求椭圆的标准方程;
(2)若P为椭圆上的一点,过点O作OP的垂线交直线
于点Q,求的值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com