科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直线坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)直线
的普通方程和曲线
的参数方程;
(2)设点
在
上,
在
处的切线与直线
垂直,求
的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)过点A(﹣
,
),离心率为
,点F1 , F2分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:
测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列及生产1件芯片甲和1件芯片乙所得总利润的平均值.
查看答案和解析>>
科目: 来源: 题型:
【题目】 某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量
与尺寸
之间近似满足关系式
(
为大于
的常数),现随机抽取
件合格产品,测得数据如下:
尺寸 |
|
|
|
|
|
|
质量 |
|
|
|
|
|
|
对数据作了初步处理,相关统计量的值如下表:
|
|
|
|
|
|
|
|
(1)根据所给数据,求
关于
的回归方程;
(2)按照某项指标测定,当产品质量与尺寸的比在区间
内时为优等品,现从抽取的
件合格产品中再任选
件,记
为取到优等品的件数,试求随机变量
的分布列和期望.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com