相关习题
 0  257780  257788  257794  257798  257804  257806  257810  257816  257818  257824  257830  257834  257836  257840  257846  257848  257854  257858  257860  257864  257866  257870  257872  257874  257875  257876  257878  257879  257880  257882  257884  257888  257890  257894  257896  257900  257906  257908  257914  257918  257920  257924  257930  257936  257938  257944  257948  257950  257956  257960  257966  257974  266669 

科目: 来源: 题型:

【题目】第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):

若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。

(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C中心在原点,焦点在坐标轴上,且该椭圆经过点( )和点 .求
(1)椭圆C的方程;
(2)P,Q,M,N四点在椭圆C上,F1为负半轴上的焦点,直线PQ,MN都过F1 ,求四边形PMQN的面积最小值和最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A′EF位置,使得A′C=2

(1)求五棱锥A′﹣BCDFE的体积;
(2)求平面A′EF与平面A′BC的夹角.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax2+(a﹣2)x﹣2,a∈R.
(1)若关于x的不等式f(x)≤0的解集为[﹣1,2],求实数a的值;
(2)当a<0时,解关于x的不等式f(x)≤0.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为[40,50),[50,60),…,[90,100].
(1)求频率分布直方图中a的值;
(2)从评分在[40,60)的师生中,随机抽取2人,求此人中恰好有1人评分在[40,50)上的概率;
(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

求函数的单调区间;

时,讨论函数图像的交点个数

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=f(x)的图象过坐标原点,其导函数f′(x)=6x﹣2,数列{an}前n项和为Sn , 点(n,Sn)(n∈N*)均在y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设 ,Tn是数列{bn}的前n项和,求当 对所有n∈N*都成立m取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC中,内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则 的取值范围为

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A,B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.

查看答案和解析>>

科目: 来源: 题型:

【题目】2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为

(Ⅰ)确定 的值;

(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.

①请将列联表补充完整;

网龄3年以上

网龄不足3年

合计

购物金额在2000元以上

35

购物金额在2000元以下

20

合计

100

②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?

参考数据:

(参考公式: ,其中

查看答案和解析>>

同步练习册答案