科目: 来源: 题型:
【题目】如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路
,另一侧修建一条休闲大道,它的前一段
是函数
,
的一部分,后一段
是函数
(
,
),
时的图象,图象的最高点为
,
,垂足为
.
(1)求函数
的解析式;
(2)若在草坪内修建如图所示的儿童游乐园PMFE,问点
落在曲线
上何处时,儿童乐园的面积最大?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽取到的可能性相同.在下列三种情况下,分别求出直到取出合格品为止时所需抽取次数x的分布列.
(1)每次取出的产品都不放回此批产品中;
(2)每次取出的产品都立即放回此批产品中,然后再取出一件产品;
(3)每次取出一件产品后总以一件合格品放回此批产品中.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C. ![]()
(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如下图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2013项为a2013 , 则a2013﹣5=( ) ![]()
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006
查看答案和解析>>
科目: 来源: 题型:
【题目】下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
查看答案和解析>>
科目: 来源: 题型:
【题目】综合题。
(1)现有5名男生和3名女生.若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?
(2)从{﹣3,﹣2,﹣1,0,1,2,3,4}中任选三个不同元素作为二次函数y=ax2+bx+c的系数,问能组成多少条经过原点且顶点在第一象限或第三象限的抛物线?
(3)已知(
+2x)n , 若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com