相关习题
 0  257831  257839  257845  257849  257855  257857  257861  257867  257869  257875  257881  257885  257887  257891  257897  257899  257905  257909  257911  257915  257917  257921  257923  257925  257926  257927  257929  257930  257931  257933  257935  257939  257941  257945  257947  257951  257957  257959  257965  257969  257971  257975  257981  257987  257989  257995  257999  258001  258007  258011  258017  258025  266669 

科目: 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

参考公式及数据:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828


(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由?

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yii=1,2,…,8)数据作了初步处理,得到下面的散点图及下面一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中 , .
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线vαβu的斜率和截距的最下二乘估计分别为 , .
(1)根据散点图判断,yabx 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润zx,y的关系为z=0.2yx.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值时多少?
②年宣传费x为何值时,年利润的预报值最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求处的切线方程;

2)设函数

)若函数有且仅有一个零点时,求的值;

)在()的条件下,若,求的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知海岛A到海岸公路BC的距离AB=50km,B,C间的距离为100km,从A到C必须先坐船到BC上的某一点D,航速为25km/h,再乘汽车到C,车速为50km/h,记∠BDA=θ
(1)试将由A到C所用的时间t表示为θ的函数t(θ);
(2)问θ为多少时,由A到C所用的时间t最少?

查看答案和解析>>

科目: 来源: 题型:

【题目】计算
(1)计算27 +lg5﹣2log23+lg2+log29.
(2)已知f(x)=3x2﹣5x+2,求f( )、f(﹣a)、f(a+3).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 若f(x1)=f(x2),且x1<x2,关于下列命题:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正确的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

(1)求这次铅球测试成绩合格的人数;

(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;

(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的偶函数,对于xR,都有f(x+4)=f(x)+f(2)成立,当x1,x2[0,2]且x1≠x2时,都有 给出下列四个命题:

①f(﹣2)=0;

直线x=﹣4是函数y=f(x)的图象的一条对称轴;

函数y=f(x)在[4,6]上为减函数;

函数y=f(x)在(﹣8,6]上有四个零点.

其中所有正确命题的序号为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】证明f(x)=﹣x2+3在(0,+∞)上是减函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列四个结论,其中正确的个数为( ). ①已 ,则
②过原点作曲线 的切线,则切线方程为 (其中e为自然对数的底数);
③已知随机变 ,则
④已知n为正偶数,用数学归纳法证明等式 时,若假设 时,命题为真,则还需利用归纳假设再证明 时等式成立,即可证明等式对一切正偶数n都成立.
⑤在回归分析中,常用 来刻画回归效果,在线性回归模型中, 表示解释变量对于预报变量变化的贡献率 越接近1,表示回归的效果越好.
A.2
B.3
C.4
D.5

查看答案和解析>>

同步练习册答案