科目: 来源: 题型:
【题目】平面上两点A(﹣1,0),B(1,0),在圆C:(x﹣3)2+(y﹣4)2=4上取一点P,
(Ⅰ)x﹣y+c≥0恒成立,求c的范围
(Ⅱ)从x+y+1=0上的点向圆引切线,求切线长的最小值
(Ⅲ)求|PA|2+|PB|2的最值及此时点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m
(1)当a=﹣3,m=0时,求方程f(x)﹣g(x)=0的解;
(2)若方程f(x)=0在[﹣1,1]上有实数根,求实数a的取值范围;
(3)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)满足:
①对任意实数m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);
②对任意m∈R,都有f(1+m)=f(1﹣m)恒成立;
③f(x)不恒为0,且当0<x<1时,f(x)<1.
(1)求f(0),f(1)的值;
(2)判断函数f(x)的奇偶性,并给出你的证明;
(3)定义:“若存在非零常数T,使得对函数g(x)定义域中的任意一个x,均有g(x+T)=g(x),则称g(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC=
,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合M={f(x)|f2(x)﹣f2(y)=f(x+y)f(x﹣y),x,y∈R},有下列命题
①若f(x)=
,则f(x)∈M;
②若f(x)=2x,则f(x)∈M;
③f(x)∈M,则y=f(x)的图象关于原点对称;
④f(x)∈M,则对于任意实数x1 , x2(x1≠x2),总有
<0成立;
其中所有正确命题的序号是 . (写出所有正确命题的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,经过点
且斜率为k的直线l与椭圆
有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量
与
共线?如果存在,求k值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合U={x|x是小于6的正整数},A={1,2},B∩(C∪A)={4},则∪(A∪B)=( )
A.{3,5}
B.{3,4}
C.{2,3}
D.{2,4}
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=(
)x , 函数g(x)=log
x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[(
)t+1 , (
)t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log
f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com