【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC=
,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
【答案】A
【解析】解:取AC的中点为F,连接BF、DF.因为在直三棱柱ABC﹣A1B1C1中,CC1∥BB1 , 又因为DF是三角形ACC1的中位线,故DF=
CC1=
BB1=BE,故四边形BEDF是平行四边形,所以ED∥BF.![]()
过点F作FG垂直与BC交BC与点G,由题意得∠FBG即为所求的角.
因为AB=1,AC=2,BC=
,所以∠ABC=
,∠BCA=
,直角三角形斜边中线BF是斜边AC的一半,故BF=
AC=CF,所以
∠FBG=∠BCA=
.
故选A.
【考点精析】通过灵活运用空间角的异面直线所成的角,掌握已知
为两异面直线,A,C与B,D分别是
上的任意两点,
所成的角为
,则
即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点. ![]()
(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
上任意一点到直线
的距离比到点
的距离大1.
(1)求曲线
的方程;
(2)过曲线
的焦点
,且倾斜角为
的直线交
于点
(
在
轴上方),
为
的准线,点
在
上且
,求
到直线
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°. ![]()
(1)求证:EF⊥PB;
(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB的体积及直线PC与平面EFCB所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(
)x , 函数g(x)=log
x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[(
)t+1 , (
)t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log
f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆M:
=1(a>b>0)的离心率为
,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求
的最大值及取得最大值时m的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知销售“笔记本电脑”和“台式电脑”所得的利润分别是P(单位:万元)和Q(单位:万元),它们与进货资金t(单位:万元)的关系有经验公式P=
t和Q=
.某商场决定投入进货资金50万元,全部用来购入这两种电脑,那么该商场应如何分配进货资金,才能使销售电脑获得的利润y(单位:万元)最大?最大利润是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com