精英家教网 > 高中数学 > 题目详情

【题目】已知曲线上任意一点到直线的距离比到点的距离大1.

(1)求曲线的方程;

(2)过曲线的焦点,且倾斜角为的直线交于点轴上方), 的准线,点上且,到直线的距离.

【答案】(1);(2).

【解析】试题分析:1)由已知得曲线C上的点到直线x=-1的距离等于到点(10)的距离,所以曲线C的轨迹是抛物线,由此能求出其方程.
2)由直线与抛物线联立得到M坐标,再根据得到N坐标,从而有直线的方程,即可求点到直线距离.

试题解析:

(1)由已知得曲线C上的点到直线x=1的距离等于到点(1,0)的距离,所以曲线C的轨迹是抛物线,其方程是

(2)

由题意知,与抛物线联立得

解得: ,所以,因为,所以.

因为,所以.

所以到直线的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,圆的极坐标方程为,且直线与圆相交于不同的 两点.

(1)求线段垂直平分线的极坐标方程;

(2)若,求过点与圆相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:不等式2x﹣x2<m对一切实数x恒成立,命题q:m2﹣2m﹣3≥0,如果¬p与“p∧q”同时为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4(m﹣2)x+1=0无实数根.
(1)若“¬p”为假命题,求m范围;
(2)若“p或q”为真命题,“p且q”为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难题的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;

(3)定义统计量,其中为第题的实测难度, 为第题的预估难度(.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若{ }为空间的一组基底,则下列各项中,能构成基底的一组向量是(
A. +
B. +
C. +
D. + +2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax在区间[0,1]上的最大值是最小值的2倍,则a的值为(
A.2
B.
C.2或
D.

查看答案和解析>>

同步练习册答案