科目: 来源: 题型:
【题目】已知矩形ABCD的长AB=4,宽AD=3,将其沿对角线BD折起,得到四面体A﹣BCD,如图所示,给出下列结论:
①四面体A﹣BCD体积的最大值为 ;
②四面体A﹣BCD外接球的表面积恒为定值;
③若E、F分别为棱AC、BD的中点,则恒有EF⊥AC且EF⊥BD;
④当二面角A﹣BD﹣C为直二面角时,直线AB、CD所成角的余弦值为 ;
⑤当二面角A﹣BD﹣C的大小为60°时,棱AC的长为 .
其中正确的结论有(请写出所有正确结论的序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)过点 ,且离心率e为 .
(1)求椭圆E的方程;
(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】经市场调查,某商品每吨的价格为x(2<x<14)元时,该商品的月供给量为y1吨,y1=ax﹣16(a≥8);月需求量为y2吨 .当该商品的需求量不小于供给量时,销售量等于供给量;当该商品的需求量小于供给量时,销售量等于需求量.该商品的月销售额f(x)等于月销售量与价格的乘积.
(1)若a=32,问商品的价格为多少元时,该商品的月销售额f(x)最大?
(2)记需求量与供给量相等时的价格为均衡价格.若该商品的均衡价格不低于每吨10元,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),
已知当x∈[0,1]时f(x)=()1-x,则
①2是函数f(x)的周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④当x∈(3,4)时,f(x)=()x-3.
其中所有正确命题的序号是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】我市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率.
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场宣传活动,应从第3,4,5组各抽取多少名志愿者?
(3)在(2)的条件下,我市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ABC=90°,点E、F分别是棱AB、BB1的中点,当二面角C1﹣AA1﹣B为45o时,直线EF和BC1所成的角为( )
A.45o
B.60o
C.90o
D.120o
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数y=f(x)满足以下条件:①定义在正实数集上;②f( )=2;③对任意实数t,都有f(xt)=tf(x)(x∈R+).
(1)求f(1),f( )的值;
(2)求证:对于任意x,y∈R+ , 都有f(xy)=f(x)+f(y);
(3)若不等式f(loga(x﹣3a)﹣1)﹣f(﹣ )≥﹣4对x∈[a+2,a+ ]恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)上的一点M的横坐标为3,焦点为F,且|MF|=4.直线l:y=2x﹣4与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若P是x轴上一点,且△PAB的面积等于9,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com