相关习题
 0  258022  258030  258036  258040  258046  258048  258052  258058  258060  258066  258072  258076  258078  258082  258088  258090  258096  258100  258102  258106  258108  258112  258114  258116  258117  258118  258120  258121  258122  258124  258126  258130  258132  258136  258138  258142  258148  258150  258156  258160  258162  258166  258172  258178  258180  258186  258190  258192  258198  258202  258208  258216  266669 

科目: 来源: 题型:

【题目】某电影院共有1000个座位,票价不分等次,根据电影院的经营经验,当每张票价不超过10元时,票可全部售出;当票价高于10元时,每提高1元,将有30张票不能售出.为了获得更好的收益,需要给电影院一个合适的票价,基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放映一场电影的成本是5750元,票房收入必须高于成本.用x(元)表示每张票价,用y(元)表示该电影放映一场的纯收入(除去成本后的收入). (Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)票价定为多少时,电影放映一场的纯收入最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】袋中装着标有数字1、2、3、4、5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量ξ的概率分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求ab的值;

2)如果是函数的两个零点, 为函数的导数,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=PA=4,A点在PD上的射影为G点,E点在AB上,平面PCE⊥平面PCD.
(1)求证:AG⊥平面PCD;
(2)求直线PD与平面PCE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设离心率为 的椭圆 的左、右焦点为 , PE上一点, , 内切圆的半径为 .

(1)E的方程;

(2)矩形ABCD的两顶点CD在直线AB在椭圆E,若矩形ABCD的周长为 , 求直线AB的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】双十一网购狂欢,快递业务量猛增.甲、乙两位快递员日到日每天送件数量的茎叶图如图所示.

)根据茎叶图判断哪个快递员的平均送件数量较多(写出结论即可);

)求甲送件数量的平均数;

)从乙送件数量中随机抽取个,求至少有一个送件数量超过甲的平均送件数量的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线f(x)= (x>0)上有一点列Pn(xn , yn)(n∈N*),过点Pn在x轴上的射影是Qn(xn , 0),且x1+x2+x3+…+xn=2n+1﹣n﹣2.(n∈N*)
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn , 求Sn
(3)在(2)条件下,求证: + +…+ <4.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2

(1)求证:CD⊥平面PAC;
(2)如果如果N是棱AB上一点,且直线CN与平面MAB所成角的正弦值为 ,求 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18﹣ ,B产品的利润y2与投资金额x的函数关系为y2= (注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}满足a1=a,an+1= (n∈N*).
(1)求a2 , a3 , a4
(2)猜测数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案