科目: 来源: 题型:
【题目】某个体户计划经销A、B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A、B商品中所获得的收益分别为f(x)万元与g(x)万元、其中f(x)=a(x﹣1)+2(a>0);g(x)=6ln(x+b),(b>0)已知投资额为零时,收益为零.
(1)试求出a、b的值;
(2)如果该个体户准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收入的最大值.(精确到0.1,参考数据:ln3≈1.10).
查看答案和解析>>
科目: 来源: 题型:
【题目】某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了
天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
假设花店在这
天内每天购进
枝玫瑰花,求这
天的日利润(单位:元)的平均数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)
x | ﹣ |
|
|
|
|
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,
]上的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(1)所示,已知四边形
是由
和直角梯形
拼接而成的,其中
.且点
为线段
的中点,
,
.现将
沿
进行翻折,使得二面角
的大小为90°,得到图形如图(2)所示,连接
,点
分别在线段
上.
![]()
![]()
(Ⅰ)证明:
;
(Ⅱ)若三棱锥
的体积为四棱锥
体积的
,求点
到平面
的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2+bx+c,其对称轴为y轴(其中b,c为常数) (Ⅰ)求实数b的值;
(Ⅱ)记函数g(x)=f(x)﹣2,若函数g(x)有两个不同的零点,求实数c的取值范围;
(Ⅲ)求证:不等式f(c2+1)>f(c)对任意c∈R成立.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|ax﹣1|﹣(a﹣1)x
(1)当a=
时,满足不等式f(x)>1的x的取值范围为;若函数f(x)的图象与x轴没有交点,则实数a的取值范围为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】若
、
是两个相交平面,则在下列命题中,真命题的序号为( )
①若直线
,则在平面
内一定不存在与直线
平行的直线.
②若直线
,则在平面
内一定存在无数条直线与直线
垂直.
③若直线
,则在平面
内不一定存在与直线
垂直的直线.
④若直线
,则在平面
内一定存在与直线
垂直的直线.
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com