相关习题
 0  258114  258122  258128  258132  258138  258140  258144  258150  258152  258158  258164  258168  258170  258174  258180  258182  258188  258192  258194  258198  258200  258204  258206  258208  258209  258210  258212  258213  258214  258216  258218  258222  258224  258228  258230  258234  258240  258242  258248  258252  258254  258258  258264  258270  258272  258278  258282  258284  258290  258294  258300  258308  266669 

科目: 来源: 题型:

【题目】已知
(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);
(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的左顶点和上顶点分别为A、B,左、右焦点分别是F1 , F2 , 在线段AB上有且只有一个点P满足PF1⊥PF2 , 则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省的一个气象站观测点在连续4天里记录的指数与当天的空气水平可见度(单位: )的情况如表1:

700

0.5

3.5

6.5

9.5

该省某市2017年9月指数频数分布如表2:

频数

3

6

12

6

3

(1)设,根据表1的数据,求出关于的线性回归方程;

(2)小李在该市开了一家洗车店,经统计,洗车店平均每天的收入与指数有相关关系,如表3:

日均收入(元)

根据表3估计小李的洗车店9月份平均每天的收入.

(附参考公式: ,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四边形ABCD满足AD∥BC,BA=AD=DC= BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分别为B1D,AE的中点.

(1)求三棱锥E﹣ACB1的体积;
(2)证明:B1E∥平面ACF;
(3)证明:平面B1GD⊥平面B1DC.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC的三个顶点A(﹣1,0),B(1,0),C(3,2),其外接圆为⊙H.若直线l过点C,且被⊙H截得的弦长为2,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′﹣BCDE.给出下列几个结论:
①A′,B,C,F′四点共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,则CE⊥A′D;
④四棱锥A′﹣BCDE体积的最大值为
其中正确的是(填上所有正确的序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】不等式2x2﹣x﹣3>0解集为(
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点A(0,2)为圆C:x2+y2﹣2ax﹣2ay=0(a>0)外一点,圆C上存在点P使得∠CAP=45°,则实数a的取值范围是(
A.(0,1)
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 ,其中 .

1)当时,求在点处切线的方程;

2)若函数在区间上单调递增,求实数的取值范围;

3)记,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,g(x)=ax,(a∈R).
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)f(x),试求函数y=F(x)在区间[1,2]上的最大值.

查看答案和解析>>

同步练习册答案