科目: 来源: 题型:
【题目】已知函数 .
(1)判断f(x)的奇偶性;
(2)用单调性的定义证明f(x)为R上的增函数;
(3)若对任意的t∈R,不等式f(mt2+1)+f(1﹣mt)>0恒成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中 x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x.
(1)求函数f(x)(x∈R)的解析式;
(2)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全完整函数f(x)的图象;
(3)求使f(x)>0的实数x的取值集合.
查看答案和解析>>
科目: 来源: 题型:
【题目】若对于函数f(x)的定义域中任意的x1 , x2(x1≠x2),恒有 和 成立,则称函数f(x)为“单凸函数”,下列有四个函数:
(1)y=2x;(2)y=lgx;(3) ;(4)y=x2 .
其中是“单凸函数”的序号为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a∈R,函数f(x)=x|x﹣a|.
(1)当a=0时,写出函数y=f(x)的单调递增区间;
(2)当a=1时,讨论函数y=f(x)的奇偶性;
(3)设a≠0,函数y=f(x)在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com