科目: 来源: 题型:
【题目】已知函数
的定义域为集合A,函数g(x)=lg(x2﹣2x+a)的定义域为集合B. (Ⅰ)当a=﹣8时,求A∩B;
(Ⅱ)若A∩RB={x|﹣1<x≤3},求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列四个结论: ①函数
的值域是(0,+∞);
②直线2x+ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a=﹣1;
③过点A(1,2)且在坐标轴上的截距相等的直线的方程为x+y=3;
④若圆柱的底面直径与高都等于球的直径,则圆柱的侧面积等于球的表面积.
其中正确的结论序号为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在几何体ABCDE中,BE⊥平面ABC,CD∥BE,△ABC是等腰直角三角形,∠ABC=90°,且BE=AB=4,CD=2,点F在线段AC上,且AF=3FC ![]()
(1)求异面直线DF与AE所成角;
(2)求平面ABC与平面ADE所成二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为了解用户对其产品的满意度,从某地区随机调查了100个用户,得到用户对产品的满意度评分频率分布表如下:
组别 | 分组 | 频数 | 频率 |
第一组 | (50,60] | 10 | 0.1 |
第二组 | (60,70] | 20 | 0.2 |
第三组 | (70,80] | 40 | 0.4 |
第四组 | (80,90] | 25 | 0.25 |
第五组 | (90,100) | 5 | 0.05 |
合计 | 100 | 1 |
(1)根据上面的频率分布表,估计该地区用户对产品的满意度评分超过70分的概率;
(2)请由频率分布表中数据计算众数、中位数,平均数,根据样本估计总体的思想,若平均分低于75分,视为不满意.判断该地区用户对产品是否满意?
查看答案和解析>>
科目: 来源: 题型:
【题目】设命题q:对任意实数x,不等式x2﹣2x+m≥0恒成立;命题q:方程
表示焦点在x轴上的双曲线.
(1)若命题q为真命题,求实数m的取值范围;
(2)若命题:“p∨q”为真命题,且“p∧q”为假命题,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知F1(﹣1,0),F2(1,0)是椭圆C1与双曲线C2共同的焦点,椭圆的一个短轴端点为B,直线F1B与双曲线的一条渐近线平行,椭圆C1与双曲线C2的离心率分别为e1 , e2 , 则e1+e2取值范围为( )
A.[2,+∞)
B.[4,+∞)
C.(4,+∞)
D.(2,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x | 1 | 2 | 3 | 4 | 5 |
y | 5 | 6 | 7 | 8 | 10 |
由资料可知y对x呈线性相关关系,且线性回归方程为
,请估计使用年限为20年时,维修费用约为( )
A.26.2
B.27
C.27.6
D.28.2
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=a(x+a)(x﹣a+3),g(x)=2x+2﹣1,若对任意x∈R,f(x)>0和g(x)>0至少有一个成立,则实数a的取值范围是( )
A.(1,2)
B.(2,3)
C.(﹣2,﹣1)∪(1,+∞)
D.(0,2)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数g(x)=ax﹣f(x)(a>0且a≠1),其中f(x)是定义在[a﹣6,2a]上的奇函数,若
,则g(1)=( )
A.0
B.﹣3
C.1
D.﹣1
查看答案和解析>>
科目: 来源: 题型:
【题目】下列选项中,表示同一集合的是( )
A.A={0,1},B={(0,1)}
B.A={2,3},B={3,2}
C.A={x|﹣1<x≤1,x∈N},B={1}
D.![]()
E.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com