科目: 来源: 题型:
【题目】已知数列{an}满足对任意的n∈N* , 都有a13+a23++an3=(a1+a2++an)2且an>0.
(1)求a1 , a2的值;
(2)求数列{an}的通项公式;
(3)若bn=
,记Sn=
,如果Sn<
对任意的n∈N*恒成立,求正整数m的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=( )
A.5
B.9
C.log345
D.10
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a∈R,函数f(x)=log2(
+a).
(1)当a=1时,解不等式f(x)>1;
(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;
(3)设a>0,若对任意t∈[
,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是市儿童乐园里一块平行四边形草地ABCD,乐园管理处准备过线段AB上一点E设计一条直线EF(点F在边BC或CD上,不计路的宽度),将该草地分为面积之比为2:1的左、右两部分,分别种植不同的花卉.经测量得AB=18m,BC=10m,∠ABC=120°.设EB=x,EF=y(单位:m). ![]()
(1)当点F与C重合时,试确定点E的位置;
(2)求y关于x的函数关系式;
(3)请确定点E、F的位置,使直路EF长度最短.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知各项为正的等比数列{an}的前n项和为Sn , S4=30,过点P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直线的一个方向向量为(﹣1,﹣1)
(1)求数列{an}的通项公式;
(2)设bn=
,数列{bn}的前n项和为Tn , 证明:对于任意n∈N* , 都有Tn
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知三条直线l1:ax﹣y+a=0,l2:x+ay﹣a(a+1)=0,l3:(a+1)x﹣y+a+1=0,a>0.
(1)证明:这三条直线共有三个不同的交点;
(2)求这三条直线围成的三角形的面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤
),x=﹣
为f(x)的零点,x=
为y=f(x)图象的对称轴,且f(x)在(
,
)上单调,则ω的最大值为( )
A.11
B.9
C.7
D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com