相关习题
 0  258644  258652  258658  258662  258668  258670  258674  258680  258682  258688  258694  258698  258700  258704  258710  258712  258718  258722  258724  258728  258730  258734  258736  258738  258739  258740  258742  258743  258744  258746  258748  258752  258754  258758  258760  258764  258770  258772  258778  258782  258784  258788  258794  258800  258802  258808  258812  258814  258820  258824  258830  258838  266669 

科目: 来源: 题型:

【题目】在二项式( + n展开式中,前三项的系数成等差数列. 求:(1)展开式中各项系数和;
【答案】解:由题意得2 × =1+ ×
化为:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
中,令x=1,可得展开式中各项系数和= =
(1)展开式中系数最大的项.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x3﹣3x2﹣9x+2.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间[﹣1,m](m>﹣1)的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:

加工零件x(个)

10

20

30

40

50

加工时间y(分钟)

64

69

75

82

90

经检验,这组样本数据具有线性相关关系,那么对于加工零件的个数x与加工时间y这两个变量,下列判断正确的是(
A.成正相关,其回归直线经过点(30,75)
B.成正相关,其回归直线经过点(30,76)
C.成负相关,其回归直线经过点(30,76)
D.成负相关,其回归直线经过点(30,75)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数yf(x)在定义域[11]上既是奇函数,又是减函数.

(1)求证:对任意x1x2[11],有[f(x1)f(x2)]·(x1x2)0

(2)f(1a)f(1a2)0,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为 . (Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P ABCD中,ABCDABADCD2AB,平面PAD⊥底面ABCDPAADEF分别为CDPC的中点.

求证:(1) BE∥平面PAD

(2) 平面BEF⊥平面PCD.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分14分)

设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比。一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元。设每天的购票人数为,盈利额为

之间的函数关系;

该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?

(参考数据:.)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l经过直线2xy50x2y0的交点P.

(1)A(50)到直线l的距离为3,求直线l的方程;

(2)求点A(50)到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型: 其中x表示经过的时间, 表示x=0时的人口,r表示人口的平均增长率.

下表是1950―1959年我国人口数据资料:

如果以各年人口增长率的平均值作为我国这一时期的人口增长率,用马尔萨斯人口增长模型建立我国这一时期的具体人口增长模型,某同学利用图形计算器进行了如下探究:

由此可得到我国1950―1959年我国这一时期的具体人口增长模型为____________. (精确到0.001)

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙俩人各进行3次射击,甲每次击中目标的概率为 ,乙每次击中目标的概率为 . (Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;

查看答案和解析>>

同步练习册答案