【题目】如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.
求证:(1) BE∥平面PAD;
(2) 平面BEF⊥平面PCD.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1) 平面平面且,由面面垂直的性质定理可得底面.(2) 可证为平行四边形,得∥,根据线面平行的判定定理证得∥平面.(3)由面面垂直的性质定理可得平面或证, 根据线面垂直的判定定理证平面可得即,依题意可得为矩形,可得,根据线面垂直的判定定理可得平面,从而可得平面⊥平面.
试题解析:证明 (1)平面平面.
又平面平面,且.∴底面. 4分
(2)∵∥, , 为的中点,
∴∥,且.∴为平行四边形.∴∥.
又∵BE平面PAD,AD平面PAD,∴∥平面. 8分
(3)∵,且四边形为平行四边形.
∴, .
由(1)知底面,则,
∴平面,从而,
又分别为的中点,
∴∥,故.
由, 在平面内,且,∴平面
∴平面⊥平面. 12分
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy 中,已知圆C的参数方程为 (φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线l的极坐方程是 ,射线OM:θ= 与圆的交点为O,P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,AF=AD=a,G是EF的中点.
(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题错误的是 ( )
A. 如果平面平面,那么平面内一定存在直线平行于平面
B. 如果平面不垂直平面,那么平面内一定不存在直线垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面内所有直线都垂直于平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在二项式( + )n展开式中,前三项的系数成等差数列. 求:(1)展开式中各项系数和;
【答案】解:由题意得2 × =1+ × ,
化为:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
在 中,令x=1,可得展开式中各项系数和= = .
(1)展开式中系数最大的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县农民年均收入服从μ=500元,σ=20元的正态分布,求:
(1)此县农民的年均收入在500~520元之间的人数的百分比;
(2)此县农民的年均收入超过540元的人数的百分比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a<﹣1,函数f(x)=|x3﹣1|+x3+ax(x∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知存在实数m,n(m<n≤1),对任意t0∈(m,n),总存在两个不同的t1 , t2∈(1,+∞),
使得f(t0)﹣2=f(t1)=f(t2),求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com