相关习题
 0  258698  258706  258712  258716  258722  258724  258728  258734  258736  258742  258748  258752  258754  258758  258764  258766  258772  258776  258778  258782  258784  258788  258790  258792  258793  258794  258796  258797  258798  258800  258802  258806  258808  258812  258814  258818  258824  258826  258832  258836  258838  258842  258848  258854  258856  258862  258866  258868  258874  258878  258884  258892  266669 

科目: 来源: 题型:

【题目】已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0, ).
(1)求椭圆C的标准方程;
(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q两点,求线段PQ的长(提示:|PQ|= |x1﹣x2|).

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;

数学成绩及格

数学成绩不及格

合计

比较细心

比较粗心

合计


(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系. 参考数据:独立检验随机变量K2的临界值参考表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)= ax2﹣lnx﹣2.
(1)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程;
(2)若a>0,求函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列具有性质;对任意两数中至少有一个是该数列中的一项,给出下列三个结论:

①数列具有性质

②若数列具有性质,则

③若数列具有性质,则

其中,正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.
(1)求证:l与C必有两交点;
(2)设l与C交于A(x1 , y1)、B(x2 , y2)两点,且直线OA和OB的斜率之和为1,求k的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下面(A)(B)(C)(D)为四个平面图形:
(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:

交点数

边数

区域数

(A)

4

5

2

(B)

5

8

(C)

12

5

(D)

15


(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E、F、G,试猜想E、F、G之间的数量关系(不要求证明).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)当时,若对任意的,总存在,使成立,求实数的取值范围;

(3)若的值域为区间,是否存在常数,使区间的长度为?若存在,求出的值;若不存在,请说明理由.(注:区间的长度为

查看答案和解析>>

科目: 来源: 题型:

【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会. (I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次水下考古活动中,某一潜水员需潜水50米到水底进行考古作业,其用氧量包含以下三个方面:

①下潜平均速度为米/分钟,每分钟的用氧量为升;

②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.3升;

③返回水面时,平均速度为米/分钟,每分钟用氧量为0.32升;潜水员在此次考古活动中的总用氧量为升.

(1)如果水底作业时间是10分钟,将表示为的函数;

(2)若,水底作业时间为20分钟,求总用氧量的取值范围;

(3)若潜水员携带氧气13.5升,请问潜水员最多在水下多少分钟(结果取整数)?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=cos(2x),x∈R.

(1)求函数f(x)单调递减区间;

(2)求函数f(x)在区间[-]上的最小值和最大值,并求出取得最值时x的值.

查看答案和解析>>

同步练习册答案