科目: 来源: 题型:
【题目】已知常数a>0,函数f(x)=ln(1+ax)﹣ .
(Ⅰ)讨论f(x)在区间(0,+∞)上的单调性;
(Ⅱ)若f(x)存在两个极值点x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了调查中小学课外使用互联网的情况,教育部向华东、华北、华南和西部地区60所中小学发出问卷份, 名学生参加了问卷调查,并根据所得数据画出样本的频率分布直方图(如图).
(1)要从这名中小学中用分层抽样的方法抽取名中小学生进一步调查,则在(小时)时间段内应抽出的人数是多少?
(2)若希望的中小学生每天使用互联网时间不少于(小时),请估计的值,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A、B两点.
(1)设抛物线在A、B处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程.
(2)若直线l与椭圆 + =1的交点为C,D,问是否存在这样的直线l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设点P在△ABC的BC边所在的直线上从左到右运动,设△ABP与△ACP的外接圆面积之比为λ,当点P不与B,C重合时,( )
A.λ先变小再变大
B.当M为线段BC中点时,λ最大
C.λ先变大再变小
D.λ是一个定值
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为 ,求 的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:
中学 | 甲 | 乙 | 丙 | 丁 |
人数 | 30 | 40 | 20 | 10 |
为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】设F为双曲线 ﹣ =1(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为( )
A.
B.2
C.
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 则( )
A.对于任意正实数x恒有f(x)≥g(x)
B.存在实数x0 , 当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)
D.存在实数x0 , 当x>x0时,恒有f(x)<g(x)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com