精英家教网 > 高中数学 > 题目详情

【题目】已知常数a>0,函数f(x)=ln(1+ax)﹣
(Ⅰ)讨论f(x)在区间(0,+∞)上的单调性;
(Ⅱ)若f(x)存在两个极值点x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范围.

【答案】解:(Ⅰ)∵f(x)=ln(1+ax)﹣ . ∴f′(x)= =
∵(1+ax)(x+2)2>0,∴当1﹣a≤0时,即a≥1时,f′(x)≥0恒成立,则函数f(x)在(0,+∞)单调递增,
当0<a≤1时,由f′(x)=0得x=± ,则函数f(x)在(0, )单调递减,在( ,+∞)单调递增.
(Ⅱ)由(Ⅰ)知,当a≥1时,f′(x)≥0,此时f(x)不存在极值点.
因此要使f(x)存在两个极值点x1 , x2 , 则必有0<a<1,又f(x)的极值点值可能是x1= ,x2=﹣
且由f(x)的定义域可知x>﹣ 且x≠﹣2,
∴﹣ >﹣ 且﹣ ≠﹣2,解得a≠ ,则x1 , x2分别为函数f(x)的极小值点和极大值点,
∴f(x1)+f(x2)=ln[1+ax1]﹣ +ln(1+ax2)﹣ =ln[1+a(x1+x2)+a2x1x2]﹣
=ln(2a﹣1)2 =ln(2a﹣1)2+ ﹣2.
令2a﹣1=x,由0<a<1且a≠ 得,
当0<a< 时,﹣1<x<0;当 <a<1时,0<x<1.
令g(x)=lnx2+ ﹣2.
(i)当﹣1<x<0时,g(x)=2ln(﹣x)+ ﹣2,∴g′(x)= = <0,
故g(x)在(﹣1,0)上单调递减,g(x)<g(﹣1)=﹣4<0,
∴当0<a< 时,f(x1)+f(x2)<0;
(ii)当0<x<1.g(x)=2lnx+ ﹣2,g′(x)= = <0,
故g(x)在(0,1)上单调递减,g(x)>g(1)=0,
∴当 <a<1时,f(x1)+f(x2)>0;
综上所述,a的取值范围是( ,1)
【解析】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决.
【考点精析】利用利用导数研究函数的单调性和函数的极值对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;极值反映的是函数在某一点附近的大小情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且经过点 是椭圆的左、右焦点.
(1)求椭圆 的方程;
(2)点 在椭圆上运动,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集为[﹣6,2],求实数a的值;
(Ⅱ)当a=2时,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4
(Ⅱ)猜想{an},{bn} 的通项公式,并证明你的结论;
(Ⅲ)证明:对所有的 n∈N* sin

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0,a≠1)在区间[﹣1,2]上的最大值为8,最小值为m.若函数g(x)=(3﹣10m) 是单调增函数,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,
求(Ⅰ)ξ的分布列;
(Ⅱ)所选女生不少于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的各项都是正数,且对任意n∈N*都有a13+a23+a33+…+an3=Sn2 , 其中Sn为数列{an}的前n和.
(1)求证:an2=2Sn﹣an
(2)求数列{an}的通项公式
(3)设bn=3n+(﹣1)n﹣1λ2 (λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

同步练习册答案