科目: 来源: 题型:
【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是( ) ![]()
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为
(t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为
(α为参数),曲线C1上点P的极角为
,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用
分别表示这4个人中去参加甲、乙游戏的人数,记
,求随机变量
的分布列与数学期望
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当
时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
(
为参数)以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)将曲线
的极坐标方程化为直角坐标方程;
(2)设点M的直角坐标为
,直线l与曲线C的交点为A,B,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点P是长轴长为
的椭圆Q:
上异于顶点的一个动点,O为坐标原点,A为椭圆的右顶点,点M为线段PA的中点,且直线PA与OM的斜率之积恒为
.
(1)求椭圆Q的方程;
(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C,D两点,线段CD的垂直平分线与x轴交于点G,点G横坐标的取值范围是
,求|CD|的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,在下列命题中,其中正确命题的序号是.
⑴曲线
必存在一条与
轴平行的切线;
⑵函数
有且仅有一个极大值,没有极小值;
⑶若方程
有两个不同的实根,则
的取值范围是
;
⑷对任意的
,不等式
恒成立;
⑸若
,则
,可以使不等式
的解集恰为
;
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点. ![]()
(1)求证:PD⊥平面ABE;
(2)若F为AB中点,
,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com