科目: 来源: 题型:
【题目】已知直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程,并判断该轨迹的曲线类型.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学生对函数
的性质进行研究,得出如下的结论:
①函数
在
上单调递增,在
上单调递减;
②点
是函数
图像的一个对称中心;
③存在常数
,使
对一切实数
均成立;
④函数
图像关于直线
对称.其中正确的结论是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,a∈R.
(Ⅰ)当a∈[1,e2]时,讨论函数f(x)的零点的个数;
(Ⅱ)令g(x)=tx2﹣4x+1,t∈[﹣2,2],当a∈[1,e]时,证明:对任意的
,存在x2∈[0,1],使得f(x1)=g(x2).
查看答案和解析>>
科目: 来源: 题型:
【题目】为了及时向群众宣传“十九大”党和国家“乡村振兴”战略,需要寻找一个宣讲站,让群众能在最短的时间内到宣讲站.设有三个乡镇,分别位于一个矩形
的两个顶点
及
的中点
处,
,
,现要在该矩形的区域内(含边界),且与
等距离的一点
处设一个宣讲站,记
点到三个乡镇的距离之和为
.
(Ⅰ)设
,将
表示为
的函数;
(Ⅱ)试利用(Ⅰ)的函数关系式确定宣讲站
的位置,使宣讲站
到三个乡镇的距离之和
最小.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业生产甲,乙两种产品均需用
两种原料,已知生产1吨每种产品需用
原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.
甲 | 乙 | 原料限额 | |
A(吨) | 3 | 2 | 12 |
B(吨) | 1 | 2 | 8 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
的右焦点为F,不垂直x轴且不过F点的直线l与椭圆C相交于A,B两点.
(Ⅰ)若直线l经过点P(2,0),则直线FA、FB的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;
(Ⅱ)如果FA⊥FB,原点到直线l的距离为d,求d的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知过抛物线
的焦点,斜率为
的直线交抛物线于
,
(
)两点,且
.
(1)求该抛物线的方程;
(2)
为坐标原点,
为抛物线上一点,若
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业生产甲,乙两种产品均需用
两种原料,已知生产1吨每种产品需用
原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.
甲 | 乙 | 原料限额 | |
A(吨) | 3 | 2 | 12 |
B(吨) | 1 | 2 | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com