科目: 来源: 题型:
【题目】已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nbn}的前n项和(n∈N*).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
经过原点
且与直线
相切于点![]()
(Ⅰ)求圆
的方程;
(Ⅱ)在圆
上是否存在两点
关于直线
对称,且以线段
为直径的圆经过原点?若存在,写出直线
的方程;若不存在,请说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二阶矩阵M有特征值λ=8及对应的一个特征向量
=[
],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求{an}的通项公式.
(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是抛物线
:
(
)上一点,
是抛物线的焦点,
且
.
(1)求抛物线
的方程;
(2)已知
,过
的直线
交抛物线
于
、
两点,以
为圆心的圆
与直线
相切,试判断圆
与直线
的位置关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知点
为平面上一动点,
到直线
的距离为
,
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)不过原点
的直线
与
交于
两点,线段
的中点为
,直线
与直线
交点的纵坐标为1,求
面积的最大值及此时直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是抛物线
:
(
)上一点,
是抛物线的焦点,
且
.
(1)求抛物线
的方程;
(2)已知
,过
的直线
交抛物线
于
、
两点,以
为圆心的圆
与直线
相切,试判断圆
与直线
的位置关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn= ![]()
(1)求证:数列{
}为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com