精英家教网 > 高中数学 > 题目详情

【题目】已知是抛物线 )上一点, 是抛物线的焦点, .

(1)求抛物线的方程;

(2)已知 ,过 的直线 交抛物线 两点,以 为圆心的圆 与直线 相切,试判断圆 与直线 的位置关系,并证明你的结论.

【答案】(1)抛物线的方程为;(2)圆与直线相切.

【解析】试题分析:1由抛物线的方程,可得焦点坐标与准线方程于点

连接 利用等边三角形,求得的值,即可得到抛物线的方程;

2当直线 的斜率不存在时,可得圆 与直线 相切.

当直线的斜率存在时,设方程为,代入抛物线的方程,求得,进而得到直线的方程,求得点到直线的距离,得到,即可判定直线与圆相切

试题解析:

(1)抛物线 : )的准线方程为 :

于点 ,连接 ,则

为等边三角形,

∴抛物线 的方程为

2)直线 的斜率不存在时, 为等腰三角形,且

∴圆 与直线 相切.

直线 的斜率存在时,设方程为

代入抛物线方程,得

,则

直线 的方程为,即

∴圆 的半径 满足

同理,直线 的方程为

到直线 的距离

,∴圆 与直线 相切,

综上所述,圆 与直线 相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x与相应的生产能耗y的几组对照数据

x

3

4

5

6

y

2.5

3

4

4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点分别是棱的中点,是侧面内一点,若平面,则线段长度的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱椎中,底面为菱形, 的中点.

(1)求证: 平面

(2)若底面 ,求三棱椎的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项项和为.

(1)求数列的通项公式;

(2)设,求数列的前n项和Tn,并证明:1≤Tn<.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,点 (n∈N*)均在函数y=3x-2的图象上.

(1)求数列{an}的通项公式;

(2)设bnTn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,求△AOB面积最小时l的方程.

查看答案和解析>>

同步练习册答案