相关习题
 0  259282  259290  259296  259300  259306  259308  259312  259318  259320  259326  259332  259336  259338  259342  259348  259350  259356  259360  259362  259366  259368  259372  259374  259376  259377  259378  259380  259381  259382  259384  259386  259390  259392  259396  259398  259402  259408  259410  259416  259420  259422  259426  259432  259438  259440  259446  259450  259452  259458  259462  259468  259476  266669 

科目: 来源: 题型:

【题目】在三棱锥ABCD中,BC⊥CD,Rt△BCD斜边上的高为1,三棱锥ABCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥ABCD体积的最大值为(
A.
B.
C.1
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知的一个顶点为抛物线的顶点 两点都在抛物线上,且.

(1)求证:直线必过一定点;

(2)求证: 面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C: =1a>b>0过点P(1, ).离心率为

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A,B两点.

①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.

t的最大值;

②若直线l的斜率为,试探究OA2+ OB2是否为定值,若是定值,则求出此

定值;若不是定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:设一正方形纸片ABCD边长为2分米切去阴影部分所示的四个全等的等腰三角形,剩余为一个正方形和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中O为正四棱锥底面中心

若正四棱锥的棱长都相等,求这个正四棱锥的体积V;

设等腰三角形APQ的底角为x,试把正四棱锥的侧面积S表示为x的函数,并求S的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一,秦九韶利用其多项式算法,给出了求高次代数方程的完整算法,这一成就比西方同样的算法早五六百年,如图是该算法求函数f(x)=x3+x+1零点的程序框图,若输入x=﹣1,c=1,d=0.1,则输出的x的值为( )

A.﹣0.6
B.﹣0.69
C.﹣0.7
D.﹣0.71

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x-1x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点是椭圆的短轴位于轴下方的端点,过作斜率为1的直线交椭圆于点,点轴上,且轴,

1)若点的坐标为,求椭圆的方程;

2)若点的坐标为,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=sin2x+sinx+cosx,以下说法中不正确的是(
A.f(x)周期为2π
B.f(x)最小值为﹣
C.f(x)在区间[0, ]单调递增
D.f(x)关于点x= 对称

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆M的圆心在直线上,且经过点A-30),B12).

(1)求圆M的方程;

2)直线与圆M相切,且y轴上的截距是x轴上截距的两倍,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,

∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PCBD的中点.

(1)证明:EF∥面PAD;

(2)证明:面PDC⊥面PAD;

(3)求四棱锥P—ABCD的体积.

查看答案和解析>>

同步练习册答案