科目: 来源: 题型:
【题目】南航集团与波音公司2018年2月在广州签署协议,双方合作的客改货项目落户广州空港经济区.根据协议,双方将在维修技术转让、支持项目、管理培训等方面开展战略合作.现组织者对招募的100名服务志愿者培训后,组织一次知识竞赛,将所得成绩制成如下频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.
![]()
(1)试求受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=2asinωxcosωx+2
cos2ωx﹣
(a>0,ω>0)的最大值为2,且最小正周期为π. (I)求函数f(x)的解析式及其对称轴方程;
(II)若f(α)=
,求sin(4α+
)的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了了解某学段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如右图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8. ![]()
(1)将频率当作概率,请估计该学段学生中百米成绩在[16,17)内的人数以及所有抽取学生的百米成绩的中位数(精确到0.01秒);
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆
经过点
,且点
到椭圆的两焦点的距离之和为
.
(l)求椭圆
的标准方程;
(2)若
是椭圆
上的两个点,线段
的中垂线
的斜率为
且直线
与
交于点
,
为坐标原点,求证:
三点共线.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】“节约用水”自古以来就是中华民族的优良传统.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如下图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.
![]()
(l)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;
(2)用
表示在未来3个月里月用水量不低于12吨的月数,求随杌变量
的分布列及数学期望
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
经过两点
,且圆心
在直线l:
上.
Ⅰ
求圆
的方程;
Ⅱ
求过点
且与圆
相切的直线方程;
Ⅲ
设圆
与x轴相交于A、B两点,点P为圆
上不同于A、B的任意一点,直线PA、PB交y轴于M、N点
当点P变化时,以MN为直径的圆
是否经过圆
内一定点?请证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1 , 且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2 , 并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是
,丙、丁考试合格的概率都是
,且考试是否合格互不影响. (I)求丙、丁未签约的概率;
(II)记签约人数为 X,求 X的分布列和数学期望EX.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正三棱锥
的体积为
,每个顶点都在半径为
的球面上,球心
在此三棱锥内部,且
,点
为线段
的中点,过点
作球
的截面,则所得截面圆面积的最小值是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com