科目: 来源: 题型:
【题目】已知
关于直线
对称,且圆心在
轴上.
(1)求
的标准方程;
(2)已经动点
在直线
上,过点
引
的两条切线
、
,切点分别为
.
①记四边形
的面积为
,求
的最小值;
②证明直线
恒过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过
时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:
)随时间(
,单位:小时)的大致变化曲线,若该曲线近似的满足函数
关系.
![]()
(1)求函数
的表达式;
(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?
查看答案和解析>>
科目: 来源: 题型:
【题目】给出以下四个结论:
①函数
是偶函数;
②当
时,函数
的值域是
;
③若扇形的周长为
,圆心角为
,则该扇形的弧长为6 cm;
④已知定义域为
的函数
,当且仅当
时,
成立.
则上述结论中正确的是______(写出所有正确结论的序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦
尺,弓形高
寸,则阴影部分面积约为(注:
,
,1尺=10寸)( )
![]()
A. 6.33平方寸B. 6.35平方寸
C. 6.37平方寸D. 6.39平方寸
查看答案和解析>>
科目: 来源: 题型:
【题目】位于潍坊滨海的“滨海之眼”摩天轮是世界上最高的无轴摩天轮,该摩天轮的直径均为124米,中间没有任何支撑,摩天轮顺时针匀速旋转一圈需要30分钟,当乘客乘坐摩天轮到达最高点时,距离地面145米,可以俯瞰白浪河全景,图中
与地面垂直,垂足为点
,某乘客从
处进入
处的观景舱,顺时针转动
分钟后,第1次到达
点,此时
点与地面的距离为114米,则
( )
![]()
A. 16分钟B. 18分钟C. 20分钟D. 22分钟
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
.
(1)求椭圆C的离心率:
(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且
,求点Q的轨迹方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知幂函数
满足
.
(1)求函数
的解析式;
(2)若函数
,是否存在实数
使得
的最小值为0?若存在,求出
的值;若不存在,说明理由;
(3)若函数
,是否存在实数
,使函数
在
上的值域为
?若存在,求出实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )
(参考数据:
)
![]()
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com