科目: 来源: 题型:
【题目】给出下面四个推理:
①由“若是实数,则”推广到复数中,则有“若是复数,则”;
②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;
③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;
④由“直角坐标系中两点、的中点坐标为”类比推出“极坐标系中两点、的中点坐标为”.
其中,推理得到的结论是正确的个数有( )个
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表:
附:,.
根据表中的数据,下列说法中,正确的是( )
A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”
B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”
C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”
D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列的前项和为,对任意满足,且,数列满足,其前9项和为63.
(1)求数列和的通项公式;
(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;
(3)将数列的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:,求这个新数列的前项和.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2= .
查看答案和解析>>
科目: 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( ) (参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象( )
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为 ρcos(θ+ )﹣1=0,曲线C的参数方程是 (t为参数).
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求 + .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xex﹣a(lnx+x).
(1)若函数f(x)恒有两个零点,求a的取值范围;
(2)若对任意x>0,恒有不等式f(x)≥1成立. ①求实数a的值;
②证明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1 , l2 , 设直线OP,l1 , l2的斜率分别是k0 , k1 , k2 , 试问在三个斜率都存在且不为0的条件下, ( + )是否是定值,请说明理由,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com