精英家教网 > 高中数学 > 题目详情

【题目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1 , l2 , 设直线OP,l1 , l2的斜率分别是k0 , k1 , k2 , 试问在三个斜率都存在且不为0的条件下, + )是否是定值,请说明理由,并加以证明.

【答案】
(1)解:如图因为 = + ,所以四边形ACPB是平行四边形,

所以| |=| |,

由| |+| |=4,得,| |+| |=4,

所以P的轨迹是以A,B为焦点的椭圆,a=2,c=1,b=

所以方程为 =1


(2)解:设P(x0,y0),过P的斜率为k的直线为y﹣y0=k(x﹣x0),

由直线与圆O相切可得 = ,即:

由已知可知k1,k2是方程 的两个根,

所以由韦达定理:k1+k2= ,k1k2=

两式相除: + =

又因为 =﹣

代入上式可得, + )=﹣ 为一个定值


【解析】(1)利用| |=| |,由| |+| |=4,得,| |+| |=4,即可求P的轨迹E;(2)所以由韦达定理:k1+k2= ,k1k2= ,两式相除: + = ,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a3=9,a5=17,记数列 的前n项和为Sn , 若 ,对任意的n∈N*成立,则整数m的最小值为(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标,制成下图,其中“*”表示男同学,“+”表示女同学.

,则认定该同学为“初级水平”,若,则认定该同学为“中级水平”,若,则认定该同学为“高级水平”;若,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.

(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;

(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;

(Ⅲ)试比较这100名同学中,男、女生指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商丘市大型购物中心——万达广场将于201876日全面开业,目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了50名顾客,体验时间(单位:分钟)落在各个小组的频数分布如下表:

体验

时间

频数

(1)求这名顾客体验时间的样本平均数,中位数,众数

(2)已知体验时间为的顾客中有2名男性,体验时间为的顾客中有3名男性,为进一步了解顾客对按摩椅的评价,现随机从体验时间为的顾客中各抽一人进行采访,求恰抽到一名男性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中

(I)求的值;

(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;

(Ⅲ)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,FD⊥平面ABCD,
(I)求证:EF∥平面ABCD;
(II)求证:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在轴上,且经过点

(Ⅰ)求线段AB的垂直平分线方程;

(Ⅱ)求圆的标准方程;

(Ⅲ)过点的直线与圆相交于两点,且,求直线的方程.

查看答案和解析>>

同步练习册答案