【题目】已知圆
的圆心在
轴上,且经过点
,
.
(Ⅰ)求线段AB的垂直平分线方程;
(Ⅱ)求圆
的标准方程;
(Ⅲ)过点
的直线
与圆
相交于
、
两点,且
,求直线
的方程.
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)
或
.
【解析】
(Ⅰ)利用垂直平分关系得到斜率及中点,从而得到结果;
(Ⅱ)设圆
的标准方程为
,结合第一问可得结果;
(Ⅲ)由题意可知:圆心
到直线的距离为1,分类讨论可得结果.
解:(Ⅰ) 设
的中点为
,则
.
由圆的性质,得
,所以
,得
.
所以线段
的垂直平分线的方程是
.
(II) 设圆
的标准方程为
,其中
,半径为
(
).
由圆的性质,圆心
在直线
上,化简得
.
所以 圆心
,
,
所以 圆
的标准方程为
.
(III) 由(I)设
为
中点,则
,得
.
圆心
到直线的距离
.
(1) 当
的斜率不存在时,
,此时
,符合题意.
(2) 当
的斜率存在时,设
,即
,
由题意得
,解得:
.
故直线
的方程为
,即
.
综上直线
的方程
或
.
科目:高中数学 来源: 题型:
【题目】已知A(﹣1,0),B(1,0),
=
+
,|
|+|
|=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1 , l2 , 设直线OP,l1 , l2的斜率分别是k0 , k1 , k2 , 试问在三个斜率都存在且不为0的条件下,
(
+
)是否是定值,请说明理由,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(sinx﹣ax2+2a﹣e),其中a∈R,e=2.71818…为自然数的底数.
(1)当a=0时,讨论函数f(x)的单调性;
(2)当
≤a≤1时,求证:对任意的x∈[0,+∞),f(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 145 | 83 | 95 | 72 | 110 |
,
;
B类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 93 | 90 | 76 | 101 |
,
;
C类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 92 | 101 | 100 | 112 |
,
;
(1)经计算己知A,B的相关系数分别为
,
.,请计算出C学生的
的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,
越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为
,利用线性回归直线方程预测该生第十次的成绩.
附相关系数
,线性回归直线方程
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=
,∠EAD=∠EAB. ![]()
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面几何中,通常将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.最小覆盖圆满足以下性质:①线段
的最小覆盖圆就是以
为直径的圆;②锐角
的最小覆盖圆就是其外接圆.已知曲线
:
,
,
,
,
为曲线
上不同的四点.
(Ⅰ)求实数
的值及
的最小覆盖圆的方程;
(Ⅱ)求四边形
的最小覆盖圆的方程;
(Ⅲ)求曲线
的最小覆盖圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
.
(1)若直线
不经过第四象限,求
的取值范围;
(2)若直线
交
轴负半轴于点
,交
轴正半轴于点
,
为坐标原点,设
的面积为
,求
的最小值及此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举办“中国诗词大赛”活动,某班派出甲乙两名选手同时参加比赛.大赛设有15个诗词填空题,其中“唐诗”、“宋词”和“毛泽东诗词”各5个.每位选手从三类诗词中各任选1个进行作答,3个全答对选手得3分,答对2个选手得2分,答对1个选手得1分,一个都没答对选手得0分.已知“唐诗”、“宋词”和“毛泽东诗词”中甲能答对的题目个数依次为5,4,3,乙能答对的题目个数依此为4,5,4,假设每人各题答对与否互不影响,甲乙两人答对与否也互不影响. 求:
(Ⅰ)甲乙两人同时得到3分的概率;
(Ⅱ)甲乙两人得分之和ξ的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com