精英家教网 > 高中数学 > 题目详情

【题目】在平面几何中,通常将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.最小覆盖圆满足以下性质:①线段的最小覆盖圆就是以为直径的圆;②锐角的最小覆盖圆就是其外接圆.已知曲线为曲线上不同的四点.

(Ⅰ)求实数的值及的最小覆盖圆的方程;

(Ⅱ)求四边形的最小覆盖圆的方程;

(Ⅲ)求曲线的最小覆盖圆的方程.

【答案】(Ⅰ);(Ⅱ);(Ⅲ).

【解析】

(Ⅰ)由题意,,利用三角形的外接圆即最小覆盖圆可得结果;

(Ⅱ)的最小覆盖圆就是以为直径的圆,易知A,C均在圆内;

(Ⅲ)由题意,曲线为中心对称图形. 设,转求的最大值即可.

解:(Ⅰ)由题意,.

由于为锐角三角形,外接圆就是的最小覆盖圆.

外接圆方程为,

, 解得.

所以 的最小覆盖圆的方程为 .

(II) 因为的最小覆盖圆就是以为直径的圆,

所以的最小覆盖圆的方程为.

又因为,所以点A,C都在圆内.

所以四边形的最小覆盖圆的方程为.

(III)由题意,曲线为中心对称图形.

,则.

所以,且.

所以 当时,

所以曲线的最小覆盖圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会, 某校开设了冰球选修课,12名学生被分成甲、乙两组进行训练.他们的身高(单位:cm)如下图所示:

设两组队员身高平均数依次为,方差依次为,则下列关系式中完全正确的是( )

A. =, =B. <,>

C. <,=D. <,<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在轴上,且经过点

(Ⅰ)求线段AB的垂直平分线方程;

(Ⅱ)求圆的标准方程;

(Ⅲ)过点的直线与圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在区间内任取两个实数,且,若不等式恒成立,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求出的值;

(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的上下焦点分别为F1 , F2 , 离心率为 ,P为C上动点,且满足 |,△QF1F2面积的最大值为4. (Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面凸四边形中(凸四边形指没有角度数大于的四边形),.

(1)若,求

(2)已知,记四边形的面积为.

① 求的最大值;

② 若对于常数,不等式恒成立,求实数的取值范围.(直接写结果,不需要过程)

查看答案和解析>>

同步练习册答案