精英家教网 > 高中数学 > 题目详情

【题目】已知函数,在区间内任取两个实数,且,若不等式恒成立,则实数的取值范围是

A. B. C. D.

【答案】B

【解析】

分析:首先,由的几何意义,得到直线的斜率,然后,得到函数图象上在区间(1,2)内任意两点连线的斜率大于1,从而得到f′(x)=1 在(1,2)内恒成立.分离参数后,转化成 a>2x2+3x+1在(1,2)内恒成立.从而求解得到a的取值范围.

详解:的几何意义为:

表示点(p+1,f(p+1)) 与点(q+1,f(q+1))连线的斜率,

实数p,q在区间(0,1)内,故p+1 和q+1在区间(1,2)内.

不等式1恒成立,

函数图象上在区间(1,2)内任意两点连线的斜率大于1,

故函数的导数大于1在(1,2)内恒成立

由函数的定义域知,x>﹣1,

∴f′(x)=1 在(1,2)内恒成立

即 a>2x2+3x+1在(1,2)内恒成立

由于二次函数y=2x2+3x+1在[1,2]上是单调增函数,

故 x=2时,y=2x2+3x+1在[1,2]上取最大值为15,

∴a≥15

∴a∈[15,+∞).

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标该目标爆炸停止射击否则就一直独立地射击至子弹用完现有5发子弹,设耗用子弹数为随机变量X.

(1)若该士兵射击两次,求至少射中一次目标的概率;

(2)求随机变量X的概率分布与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表1是某年部分日期的天安门广场升旗时刻表.

表1:某年部分日期的天安门广场升旗时刻表

将表1中的升旗时刻化为分数后作为样本数据(如:可化为).

(Ⅰ)请补充完成下面的频率分布表及频率分布直方图;

分组

频数

频率

4:00—4:59

3

5:00—5:59

0.25

6:00—6:59

7:00—7:59

5

合计

20

(Ⅱ)若甲学校从上表日期中随机选择一天观看升旗.试估计甲学校观看升旗的时刻早于6:00的概率;

(Ⅲ)若甲,乙两个学校各自从表1中五月、六月的日期中随机选择一天观看升旗, 求两校观看升旗的时刻均不早于5:00的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,通常将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.最小覆盖圆满足以下性质:①线段的最小覆盖圆就是以为直径的圆;②锐角的最小覆盖圆就是其外接圆.已知曲线为曲线上不同的四点.

(Ⅰ)求实数的值及的最小覆盖圆的方程;

(Ⅱ)求四边形的最小覆盖圆的方程;

(Ⅲ)求曲线的最小覆盖圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知边长为的正的顶点在平面内,顶点在平面外的同一侧,点分别为在平面内的投影,设,直线与平面所成的角为.若是以角为直角的直角三角形,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面平面分别为的中点.

(1)证明:平面平面

(2)求三棱锥的体积;

(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,若AB=CD= ,AC=BD=2,AD=BC= ,则直线AB与CD所成角的余弦值为(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形ABCD如图1中,AD= ,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P﹣BCDE如图2所示.

(Ⅰ)若点M为PC中点,求证:BM∥平面PDE;
(Ⅱ)当平面PDE⊥平面BCDE时,求三棱锥E﹣PCD的体积.

查看答案和解析>>

同步练习册答案