相关习题
 0  259755  259763  259769  259773  259779  259781  259785  259791  259793  259799  259805  259809  259811  259815  259821  259823  259829  259833  259835  259839  259841  259845  259847  259849  259850  259851  259853  259854  259855  259857  259859  259863  259865  259869  259871  259875  259881  259883  259889  259893  259895  259899  259905  259911  259913  259919  259923  259925  259931  259935  259941  259949  266669 

科目: 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏
B.3盏
C.5盏
D.9盏

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆经过点,且圆心在直线.

1)求圆的方程;

2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,

(1)把全程运输成本()表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;

(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四棱锥的底面是菱形,底面上的任意一点

求证:平面平面

,求点到平面的距离

的条件下,若,求与平面所成角的正切值

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司为确定下一年度投人某种产品的宣传费,需了解年宣传费对年销售额(单位:万元)的影响,对近6年的年宣传费和年销售额数据进行了研究,发现宣传费和年销售额具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(I)根据表中数据建立关于的回归方程;

(Ⅱ)利用(I)中的回归方程预测该公司如果对该产品的宜传费支出为10万元时销售额是万元,该公司计划从10名中层管理人员中挑选3人担任总裁助理,10名中层管理人员中有2名是技术部骨干,记所挑选3人中技术部骨干人数为且随机变量,求的概率分布列与数学期望.

附:回归直线的倾斜率截距的最小二乘估计公式分别为:

,

查看答案和解析>>

科目: 来源: 题型:

【题目】随着业的迅速发展计算机也在迅速更新换代,平板电脑因使用和移动便捷以及时尚新潮性,而备受人们尤其是大学生的青睐,为了解大学生购买平板电脑进行学习的学习情况,某大学内进行了一次匿名调查,共收到1500份有效问卷.调查结果显示700名女学生中有300人,800名男生中有400人拥有平板电脑.

(Ⅰ)完成下列列联表:

(Ⅱ)分析是否有的把握认为购买平板电脑与性别有关?

附:独立性检验临界值表:

(参考公式:,其中)

查看答案和解析>>

科目: 来源: 题型:

【题目】校运动会高二理三个班级的3名同学报名参加铅球、跳高、三级跳远3个运动项目,每名同学都可以从3个运动项目中随机选择一个,且每个人的选择相互独立.

(1)求3名同学恰好选择了2个不同运动项目的概率;

(Ⅱ)设选择跳高的人数为试求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三点在椭圆C上.(12分)
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.

男生

女生

)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为的概率?

)若从阅读名著不少于本的学生中任选人,设选到的男学生人数为,求随机变量的分布列和数学期望.

)试判断男学生阅读名著本数的方差与女学生阅读名著本数的方程的大小.

查看答案和解析>>

同步练习册答案