科目: 来源: 题型:
【题目】已知函数
的最小正周期为
,且直线
是其图象的一条对称轴.
(1)求函数
的解析式;
(2)在
中,角
、
、
所对的边分别为
、
、
,且
,
,若
角满足
,求
的取值范围;
(3)将函数
的图象向右平移
个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的
倍后所得到的图象对应的函数记作
,已知常数
,
,且函数
在
内恰有
个零点,求常数
与
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图: ![]()
(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量(g) | [5,25) | [25,45) | [45,55] |
按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知常数
且
,在数列
中,首项
,
是其前
项和,且
,
.
(1)设
,
,证明数列
是等比数列,并求出
的通项公式;
(2)设
,
,证明数列
是等差数列,并求出
的通项公式;
(3)若当且仅当
时,数列
取到最小值,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=
(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为
,弦长为
的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中
,
)
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:
(t为参数)与曲线C:
(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=
,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|
,其中P(2,
),求直线l的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着我国经济模式的改变,电商已成为当今城乡种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出
吨该商品可获利润
万元,未售出的商品,每吨亏损
万元根据往年的销售资料,得到该商品一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了
吨该商品,现以
单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万 元)表示该电商下“个销售季度内经销该商品获得的利润.
![]()
(1)视
分布在各区间内的频率为相应的概率,求
;
(2)将
表示为
的函数,求出该函数表达式;
(3)在频率分布直方图的市场需求量分组中,若以市场需求量落入该区间的频率作为市场需求量的概率,求该季度利润不超过
万元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=sinωxcosωx﹣
(ω>0)图象的两条相邻对称轴为
.
(1)求函数y=f(x)的对称轴方程;
(2)若函数y=f(x)﹣
在(0,π)上的零点为x1 , x2 , 求cos(x1﹣x2)的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】候鸟每年都要随季节的变化而进行大规模地迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量M之间的关系为:
,(其中a,b是实数),据统计,该种鸟类在静止的时间其耗氧量为45个单位,而其耗氧量为105个单位时,其飞行速度为1m/s.
(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com