相关习题
 0  259832  259840  259846  259850  259856  259858  259862  259868  259870  259876  259882  259886  259888  259892  259898  259900  259906  259910  259912  259916  259918  259922  259924  259926  259927  259928  259930  259931  259932  259934  259936  259940  259942  259946  259948  259952  259958  259960  259966  259970  259972  259976  259982  259988  259990  259996  260000  260002  260008  260012  260018  260026  266669 

科目: 来源: 题型:

【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.

参考公式及数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l,半径为4的圆C与直线l相切,圆心Cx轴上且在直线l的右上方.

Ⅰ)求圆C的方程;

Ⅱ)过点M (2,0)的直线与圆C交于AB两点(Ax轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[ ]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知等腰梯形中,的中点,,将沿着翻折成,使平面平面

)求证:

)求二面角的余弦值;

)在线段上是否存在点P,使得平面,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:

分组

频数

频率

24

4

0.1

2

0.05

合计

1

(1)求出表中及图中的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】一项抛掷骰子的过关游戏规定:在第关要抛掷一颗骰子次,如里这次抛掷所出现的点数和大于,则算过关,可以随意挑战某一关.若直接挑战第三关,则通关的概率为______;若直接挑战第四关,则通关的慨率为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, , .

(Ⅰ)若的中点,求证: 平面

(Ⅱ)若 ,求三棱锥的高.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

同步练习册答案