科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆
(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,
)都在椭圆上,其中e为椭圆的离心率. ![]()
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1﹣BF2=
,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了了解创建文明城市过程中学生对创建工作的满意情况,相关部门对某中学的100名学生进行调查.得到如下的统计表:
满意 | 不满意 | 合计 | |
男生 | 50 |
|
|
女生 |
| 15 |
|
合计 |
|
| 100 |
已知在全部100名学生中随机抽取1人对创建工作满意的概率为
.
(1)在上表中
相应的数据依次为;
(2)是否有充足的证据说明学生对创建工作的满意情况与性别有关?
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程
,若变量
增加一个单位时,则
平均增加5个单位;
③线性回归方程
所在直线必过
;
④曲线上的点与该点的坐标之间具有相关关系;
⑤在一个
列联表中,由计算得
,则其两个变量之间有关系的可能性是
.
其中错误的是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:
作文成绩优秀 | 作文成绩一般 | 总计 | |
课外阅读量较大 | 22 | 10 | 32 |
课外阅读量一般 | 8 | 20 | 28 |
总计 | 30 | 30 | 60 |
由以上数据,计算得到
的观测值
,根据临界值表,以下说法正确的是( )
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.05 | 0.010 | 0.005 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”
B. 在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关
C. 在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关
D. 在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣
(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标. ![]()
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证: ![]()
(1)平面ADE⊥平面BCC1B1;
(2)直线A1F∥平面ADE.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知复数z满足|z|=
的虚部为2,z所对应的点在第一象限,
(1)求z;
(2)若z,z2,z-z2在复平面上对应的点分别为A,B,C,求cos∠ABC.
查看答案和解析>>
科目: 来源: 题型:
【题目】有一位同学家里开了一个小卖部,他为了研究气温对热茶销售的影响,经过统计,得到一个卖出热茶杯数与当天气温的对比表如下:
气温x/℃ | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
热茶销售杯数y/杯 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(1)画出散点图;
(2)你能从散点图中发现气温与热茶的销售杯数之间关系的一般规律吗?
(3)如果近似成线性关系的话,请画出一条直线来近似地表示这种线性关系;
(4)试求出回归直线方程;
(5)利用(4)的回归方程,若某天的气温是2 ℃,预测这一天卖出热茶的杯数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义在(﹣4,4)上的奇函数,满足f(2)=1,当﹣4<x≤0时,有f(x)=
.
(1)求实数a,b的值;
(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明其在该区间上的单调性;
(3)解关于m的不等式f(m2+1)+
>0.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax2+bx+1(a,b为实数),设
,
(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)满足f(-x)=f(x),试比较F(m)+F(n)的值与0的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com