科目: 来源: 题型:
【题目】已知函数f(x)=lnx+ax2
(1)讨论f(x)的单调性;
(2)设a>1,若对任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数在轴左侧的图象,如图所示,并根据图象:
(1)直接写出函数, 的增区间;
(2)写出函数, 的解析式;
(3)若函数, ,求函数的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知斜率为k(k≠0)的直线 交椭圆 于 两点。
(1)记直线 的斜率分别为 ,当 时,证明:直线 过定点;
(2)若直线 过点 ,设 与 的面积比为 ,当 时,求 的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明在上是减函数;
(3)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
查看答案和解析>>
科目: 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费元.
(1)当每辆车的月租金定为元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,a= ,b+c=3(b>c),求b,c的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题正确个数为( )
(1)若,当时,则在上是单调递增函数;
(2)单调减区间为;
(3)
-3 | -2 | -1 | 0 | 1 | 2 | 3 | |
4 | 3 | 2 | 1 | -2 | -3 | -4 |
上述表格中的函数是奇函数;
(4)若是上的偶函数,则都在图像上.
A.0B.1个C.2个D.3个
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数)若以O点为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上各点的横坐标缩短为原来的 ,再将所得曲线向左平移1个单位,得到曲线C1 , 求曲线C1上的点到直线l的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com