科目: 来源: 题型:
【题目】我们学习了二元基本不等式:设
,
,
,当且仅当
时,等号成立利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值.
(1)对于三元基本不等式请猜想:设![]()
当且仅当
时,等号成立(把横线补全).
(2)利用(1)猜想的三元基本不等式证明:
设
求证:![]()
(3)利用(1)猜想的三元基本不等式求最值:
设
求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3-b3=1.
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求数列{cn}的前n项和Sn.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知实数x、y满足
,目标函数z=x+ay.
(1)当a=﹣2时,求目标函数z的取值范围;
(2)若使目标函数取得最小值的最优解有无数个,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:
原料 | 磷酸盐(单位:吨) | 硝酸盐(单位:吨) |
甲 | 4 | 20 |
乙 | 2 | 20 |
现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an}的各项均为正数,a1=1,前n项和为Sn.数列{bn}为等比数列,b1=1,且b2S2=6,b2+S3=8.
(1)求数列{an}与{bn}的通项公式;
(2)求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.
![]()
(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?
(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.我们教材中利用该图作为一个说法的一个几何解释,这个说法正确的是( )
![]()
A.如果
,那么
B.如果
,那么![]()
C.对任意正实数
和
,有
, 当且仅当
时等号成立D.对任意正实数
和
,有
,当且仅当
时等号成立
查看答案和解析>>
科目: 来源: 题型:
【题目】设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x+
+3,则对于y=f(x)在x<0时,下列说法正确的是( )
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com