精英家教网 > 高中数学 > 题目详情

【题目】设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x++3,则对于y=f(x)在x<0时,下列说法正确的是(  )
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7

【答案】B
【解析】解:由于y=f(x)是定义在R上的奇函数,
则f(x)的图象关于原点对称,
当x>0时,f(x)=4x++3,
由4x+≥2=4,
当且仅当x= , 取得最小值,且为4,
即有x>0时,f(x)的最小值为7,
则x<0时,f(x)取得最大值﹣7.
故选:B.
【考点精析】通过灵活运用基本不等式在最值问题中的应用,掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)的表达式为f(x)= (c≠0),则函数f(x)的图象的对称中心为(﹣ ),现已知函数f(x)= ,数列{an}的通项公式为an=f( )(n∈N),则此数列前2017项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }为等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n﹣1) an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美味,这样网上外卖订餐应运而生.若某商家的一款外卖便当每月的销售量(单位:千盒)与销售价格(单位:元/盒)满足关系式其中,为常数,已知销售价格为14元/盒时,每月可售出21千盒.

(1)求的值;

(2)假设该款便当的食物材料、员工工资、外卖配送费等所有成本折合为每盒12元(只考虑销售出的便当盒数),试确定销售价格的值,使该店每月销售便当所获得的利润最大.(结果保留一位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面 中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的各项均为正数,a1=1,前n项和为Sn.数列{bn}为等比数列,b1=1,且b2S2=6,b2S3=8.

(1)求数列{an}与{bn}的通项公式;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知函数f(x)=ax2bxc(a>0,bR,cR).

(1)若函数f(x)的最小值是f(-1)=0,且c=1, F(x)=F(2)+F(-2)的值;

(2)a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx)=x22ax+2x[03]

1a1 时,求 fx)的值域;

2)求 fx)的最小值 .

查看答案和解析>>

同步练习册答案