【题目】已知函数 f(x)=x2﹣2ax+2,x∈[0,3].
(1)a=1 时,求 f(x)的值域;
(2)求 f(x)的最小值 .
【答案】(1)[1,5];(2)=
【解析】
(1)当a=1时,f(x)=x2﹣2x+2,通过配方法分析解析式的对称轴,再结合定义域,即可求得
(2)由于参数a的不确定性,处理方式跟(1)相同,先用配方法表示出函数,再讨论对称轴与定义域的基本关系,最终求得
(1)根据题意,a=1时,f(x)=x2﹣2x+2=(x﹣1)2+1,
又由x∈[0,3],则有1≤f(x)≤5,即函数的值域为[1,5];
(2)根据题意,f(x)=x2﹣2ax+2=(x﹣a)2+2﹣a2,是对称轴为x=a,且开口向上的二次函数;
分3种情况讨论:
当a<0时,f(x)在[0,3]上为增函数,此时g(a)=f(0)=2,
当0≤a≤3时,此时g(a)=f(a)=2﹣a2,
当a>3时,f(x)在[0,3]上为减函数,此时g(a)=f(3)=11﹣6a,
综合可得:=.
科目:高中数学 来源: 题型:
【题目】设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x++3,则对于y=f(x)在x<0时,下列说法正确的是( )
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知ABCD—A′B′C′D′是平行六面体.
(1)化简;
(2)设M是底面ABCD的中心,N是侧面BC C′ B′对角线B C′上的分点,设,试求α,β,γ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数中表示同一个函数的是()
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=x2,g(x)=( )4
C.f(x)=,g(x)=|x|
D.f(x)=,g(x)=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一次函数是上的减函数,,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)单调递增,求实数的取值范围;
(3)当时,有最大值1,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,D、E分别是△ABC的边BC的三等分点,设 =m, =n,∠BAC= .
(1)用 、 分别表示 , ;
(2)若 =15,| |=3 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上有最大值4 和最小值1,设.
(1)求的值;
(2)若不等式在区间上有解,求实数的取值范围;
(3)若有三个不同的实数解,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com