【题目】如图,D、E分别是△ABC的边BC的三等分点,设
=m,
=n,∠BAC=
. ![]()
(1)用
、
分别表示
,
;
(2)若
=15,|
|=3
,求△ABC的面积.
科目:高中数学 来源: 题型:
【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于向量a,b,e及实数x,y,x1,x2,
,给出下列四个条件:
①
且
; ②![]()
③
且
唯一; ④![]()
其中能使a与b共线的是 ( )
A.①②
B.②④
C.①③
D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
(
)的离心率是
,点
在短轴
上,且
。
(1)球椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
两点。是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2cos(2x+
)的图象向左平移
个单位长度,得到函数y=f(x)的图象.
(1)求f(x)的单调递增区间;
(2)求f(x)在[0,
]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的偶函数,当x
0时,f(x)=
.
(1)求当x<0时,f(x)的解析式;
(2)作出函数f(x)的图象,并指出其单调区间.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为
,在同一平面直角坐标系中,将曲线C上的点按坐标变换
得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系. (Ⅰ)求曲线C'的极坐标方程;
(Ⅱ)若过点
(极坐标)且倾斜角为
的直线l与曲线C'交于M,N两点,弦MN的中点为P,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com